From The Architect

A Veeam Architect Paper

Getting Started with Veeam REST APlIs

Authors Edward Howard & Jorge De La Cruz



From The Architeot

Contents
EXECUTIVE SUMIMIAIY cettiitiiitiiiieitietetiee et et ee e eeae et et e eeee s e et aeeeeeeeaeseeeeeseseeeseeseesaeeeeseeeseessesnsessessssnnnsrnns 3
I L= A= T8 Lo =T ol TP 3
Ta1aoTe I3 AT ] o U PP PR PURTRP 3
Yo 1Ty = T Lo LT g =g Y o [ USSR 4
The WOTIA IS API-AIIVEN c..coiiiiie ettt ettt e e e sbe e beesaeeeaee s 4
WAt CrEatES MESPONSES? . uiiiiiiiieeeeciitee e ettt e e ecttee e e e teeeeeebteeeesttaeeesanbeeeeasteaeesansaeaessssaeesansasaesnnsteeanns 5
UNderstanding HTTP rEQUESTES ......eeiiiciieeiieiieee ettt e e eette e eete e e e ettree s e eteeeesantaaeesetaeeesansteaeessssnessanseeeesnnens 6
2T oJoY T <l o o [ USRS 6
7\ 014 o (o] 4 T 1 To ] o H POV PRI 7
BasiC AUTRENTICATION ..ot st sttt e sr e et e e naees 7
Self-SIgNEA COITITICAtES .. uviiiieiiee et et e e e e s et te e e e bte e e e sabe e e s easraaeeannees 8
(07110 4 1 O PP PP 8
Example 1 — Login and obtain a Bearer on Veeam Backup and Replication APl ...........cccccvvveeeeen. 9
Working with Authorisation Response data.......ccccccciiiiiiii e 10
WAt @8 AITAYS wueeeeicieie e ettt ettt e eecte e e e ettt e e e s ette e e e stteeeesaabeeeeeataeessaateeeeaastaeasaseaeeansseeesanstaeeennnses 10
Y LA T @ o [Tt 43 USSR 11
PraCiCal US@... ittt ettt sttt e e s et e e sbe e e s ae e e sab e e ebee e s bt e e b e e e anreesnreennneas 11
LU 0= o o V= A USRS 13
Working with the DOCUMENTAtION ...cceviii i e e e e e e e e e e e earranes 13
Making an AULhOriSEd GET FEOUEST ......uviieiciiieeeiieeeeeceee e ettee e e sre e e e sstre e e e sbaeeeesatee e e eabaeeessseeesennnees 15
YT Yo =1=T o U ] B T T TSP 15
NV o o= gl o =4 1 o PSPPI 16
API Credentials @nd BEATEN ........c.uiiiieeiee ettt ettt ettt e s e e sbee s nee e sareeseneee s 16
Job Sessions API Call USING SWaBEET ......uiiiiiiiiiiecieee ettt e e et e e tae e s e stae e e e s aaeeeeensaeeens 17
POSEMAN Liiiiiiiiiii it e s e 19
MakKing POST & PUT FEQUESES ..e.uuviiieiiitiiiieeiiee e eiteeeec it e e tae e e e sata e e e saabe e e e sabaeeessnaaeeesnasaaeeeenseneesnnnees 21
Advanced manipulation tECHNIGUES ..........euiiiiiiiiee et e e et e e e e e e e raeaeeeas 21
Example — Using Jg to parse the Job Sessions JSON reSpoNSEe ........ccueeeeeeeiecciiiieeeeeeeecciereee e e e eeeeans 22
Example jq grabbing the name, endTime, result, and message from the last job .........cccccuuveeeenee. 22
(6e] 3Tl (U1 o F TP P PP URT PP 23
Appendix A — Python JSON Manipulation.........cecei i e e e e e e e 24
Appendix B — Quick example using Bash Shell..............oooiiiiii et 25

Page | 2 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Executive Summary

Representational State Transfer Application Programming Interface or REST APIs provide a granular,
flexible, and scalable method to report, manage, and automate Veeam applications. (REST API will
be referred to as API for the remainder of this document).

This guide will outline how you use Veeam APIs in your data protection workflow with practical
examples of how you can take advantage of this powerful resource.

Target audience

This Whitepaper is mainly intended by a technical audience such as backup administrators and
systems engineers. However, it also applies to anyone that requires a fast, efficient method of
accessing and managing Veeam applications.

Introduction

This Whitepaper doesn't assume any prior knowledge of command line or specific coding languages.
However, to properly take advantage of the power of APIs, a coding language will be required.

This guide will show examples using PowerShell, Linux Shell, and Python. PowerShell and the Linux
Shell can perform quick commands with little setup; however, data manipulation of the responses is
arguably more trickly.

Curl with Jg and Python will be used for most of the examples in this Whitepaper as they have
relatively simple syntax and are easier to learn.

Also, the principles that can be learned by using Curl and Python can be transferred to other
languages such as PowerShell, JavaScript, C# and Go to and many others.

This guide will primarily focus on Veeam Backup and Replication; however, the principles that are
shown can also be applied to:

e Veeam Enterprise Manager

e Veeam Service Provider Console
e Veeam Backup for 0365

e Veeam Backup for AWS

e Veeam Backup for Azure

e Veeam Backup for GCP

e Veeam ONE

Page | 3 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Understanding APIs

The world of the web is underpinned by APIs or Representational State Transfer Application
Programming Interface. It allows applications to communicate with each other with nothing more
than a network or internet connection.

Quick example: Think of an API as a waitress, you have a menu, and you select some food, the
waitress takes that order to the kitchen, who prepares the food, and the waitress delivers the order
to your table:

Request — @@API
Response l—-
You g Server

The world is API-driven

Do you remember the good old days when we were thinking about our holidays, searching for
different Hotels, pricing, locations, transportation, activities to do at the destination, etc.? What a
blast from the past, right? It never looked complex like going to 15 different websites to book
everything, like this:

s
<

S, K>
Instead, modern websites interact with each other, so the end-user, us in this case, could have a
seamless experience. You can book the whole flight, transportation, hotel, activities, and payment,
all without the need to go to different websites; in the background, what is happening is something
like this. An application, or system, performs the required API calls, either GET, POST, etc. and builds

a response to the end-user:

&) T S S
8 —— .DE ’.::::::: é @ %
‘—" w-: L':":A:-:':_:‘:-:‘:r:/:&g):\):::::::_’.jg??._._._' /E'B\J

:! ------- @ y T
; o o Z0)

Page | 4 Getting Started with Veeam RESTAPIs  Authors Edward Howard & Jorge DelaCruz ~ V.1.0



From The Architect

On a bit more technical note, and as a quick check: If you were to open your web browser and press
CTL + SHIFT + 1, then go to the Network tab, you could view some of these requests when you load a
webpage.

[PEGTS ' HTEuSIY  CIEVIEW,  OE3pUNEC uuaw [RILIT pa—— N Y

B www.google.couk " *General
m=cdos,dpf hsm jsa.d.csi
M ADeadlSETE_3FMMEymLFBYgxWOMcBNgfpDklul12-Cthe=s32-c-mo

googlelego_color 272x92dp.png

Request URL: https://www.google.co.uk/
Request Method: GET

Status Code: @ 200
N dataiimage/pngbase..,

rs=AAZYrTszg4 52U cKTZIdyRIEIPITIXMOHO
7 rs=AAZYrTUEQWaFGUI-piUBigh-g4X61ilvaw

Remote Address: 216.58.213.3:443

Referrer Policy: strict-origin-when-cross-origin

Unlike CLI (Command Line Interfaces), APIs do not require a specific application to access them; the
software needs to make an HTTP request.

What creates responses?

An API Server is a web server that listens to incoming requests and, based on the information
requested, sends back the requested data, usually in JSON (JavaScript Object Notation) format. It
should be noted that XML (Extensible Markup Language) was commonly used before JSON.

JSON is easier to read and work with, taking over as the main data transfer formatting type.

The data within the JSON can either be hardcoded into files directly in the code itself or, more
commonly, held in a Database. It is then translated into JSON format by the server application and
sent back to the requester.

Note: The Veeam Enterprise Manager AP| defaults to XML response formatting. JSON needs to be
specifically requested from the API to get a response in the formatting

“Content-Type”: “application/json”

Page | 5 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architeot

Understanding HTTP requests

An HTTP request to an APl requires different constructs depending on the requested action.

An HTTP request has several verbs that define the action that is being requested:

Read data or resources

Create data or resources
Delete data or resources
Update data or resources

Source: MDN*

These are not the only options available, but these are the ones that are relevant for working with
Veeam APIs.

GET requests are relatively easy and can be done using a simple command-line command.

PowerShell

Invoke-WebRequest -URI https://jsonplaceholder.typicode.com/todos/1

Curl

curl https://jsonplaceholder.typicode.com/todos/1

Note that Curl has been added to later versions of Windows, but it is a wrapper around Invoke-WebRequest. You can send
Curl commands directly in Windows if you use either Gitbash? or WSL3.

POST and PUT requests tend to be more involved and usually require more setup to send the data to
the API. These will be discussed in more length later in the Whitepaper.

Response Codes

Response codes come back from the APl in the response and provide quick information on how the
API call went.

e 1xx: Informational — Communicates transfer protocol-level information.

e  2xx: Success — Indicates that the client's request was accepted successfully.

e 3xx: Redirection — This indicates that the client must take additional action to complete their
request.

e 4xx: Client Error — This category of error status codes points the finger at clients.

e 5xx: Server Error — The Server takes responsibility for these error status codes.

Reference: https://restfulapi.net/http-status-codes/

The key takeaway is that you want a 2xx response code back from the API.

1 https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
2 https://gitforwindows.org/
3 https://docs.microsoft.com/en-us/windows/wsl/install

Page | 6 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architeot

Authorisation

Authorisation is arguably the most challenging part of using APIs, but it is a step that usually only
needs to be done once. The great thing about coding is that it is easy to copy/paste code snippets
from one program to another or even create reusable code in the form of modules that can be
imported repeatedly. So, once you get past this step in your learning, things get a lot easier.

There are several different types of Authorisation available; however, for this Whitepaper, we will be
focusing on two types which Veeam APIs use:

e Basic Auth
e OAuth 2.0

Basic Authentication

As defined by the RFC 7617standard, Basic Authentication transmits credentials as user-id/password
pairs, encoded in base64.

Base64 is a method of encoding data; for example, "Hello World" would be encoded into
"SGVsbG8gV29ybGQ=".*

Many languages will do the base64 encoding for you before sending the request; others may not. So,
again you do need to check the specifics of your chosen language's HTTP package.

But for completeness, here is a representation of the conversation process:

Username Password

administrator password

T

administrator:password

|

YWRtaW5pc3RyYXRvcjpwYXNzd29yZA==

With Basic Authentication, the credentials are held in the Header, so they need to be constructed
into the header Object before sending to the API. No Body needs to be sent to the API as part of the
authorisation process.

A Header can be seen as instructions that are being sent to the Server outside of the main data being
sent in the Body. It is like an introduction in a Document.

If the Authentication is successful, a Token is sent back as part of the response header object; in
Enterprise Manager's case, it is called "X-RestSvcSessionld". You can then use this Token in the
Header of your requests to the API from that point, usually with a time-out that requires you to re-
authenticate after a period of inactivity.

4 https://www.online-python.com/B8PhJU1WZ7 online example in Python

Page | 7 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architeot

Self-Signed Certificates

Many Veeam on-premises installations use self-signed certificates for the Veeam API, so the CA
(Certificate Authority) cannot be verified. A signed certificate is highly recommended to apply to
APIs, particularly web-facing APIs such as Veeam Backup for AWS/Azure/GCP, as it prevents "man-in-
the-middle attacks". However, it is also possible to tell the HTTP software to ignore the certificate
check. An example of this is Curl's -k or --insecure flag.

NOTE: Again, be very cautious of ignoring certificates.

OAuth 2.0

OAuth 2.0 works differently and underpins all the newer APIs in the Veeam family of Products.

With OAuth 2.0, you need to send the Username and Password, but it is held in the request's Body
instead of in the headers. It also requires you to specify a "Grant-Type" parameter when sending the
request.

body = {
"Grant-Type": "password",
"Username": "administrator™,
"Password": "password"
}
headers = |
"accept™: "application/json”,
"¥—api-version": "1.0-revl",
"Content-Type™: "application/x-www-form-urlencoded”

You will note that the "Content-Type" parameter is "application/x-www.form-urlencoded" unlike
with the Basic Auth which uses "application/json". As well as some other headers that are also
required.

If you were to write out the body object yourself in x-www.form-urlencoded, it would need to look
like this:

Grant-Type=password&Username=administrator&Password=password

However, thankfully, most languages again have either a method of "parsing" the data before being
sent or doing the conversion automatically for you during the request—for example, Python's
"Requests" library®.

The next step is sending a request to the Authorisation endpoint; an endpoint is a specific URL that
handles a request type. For example, with the direct APl from Veeam Backup and Replication, which
was added in v11, the endpoint is:

https://your-vbr-address:9419/api/oauth2/token

If successful, like with Basic Auth, you will receive a "200" response code, and a "Bearer Token" will
be included in the Body of the response.

5> https://2.python-requests.org/en/master/

Page | 8 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Response
200

Response Body

To use the Token, it needs to be transferred to the headers of your requests like so:

headers = {
“accept”: “application/json”,
“x-api-version”: “1.0-rev1”,

»

“Authorization”: “Bearer ..

Note that you need to prepend the Bearer Token with the word "Bearer" before sending further
requests. As the data from the response is essentially a string value, simply concatenating "Bearer'
to the front is sufficient before adding it back to the Header.

Example 1 — Login and obtain a Bearer on Veeam Backup and Replication API
As an example of this process, we will look at using working through the steps using a normal Curl,
the first step is to use Curl, point to the auth endpoint, including the credentials, like here:

curl -X POST "https://YOURVBRIPORFQDN:9419/api/oauth2/token" -H "accept: application/json" -H "x-api-version: 1.0-
revl" -H "Content-Type: application/x-www-form-urlencoded"” -d

"grant_type=password&username=YOURUSER&password=YOURPASS&refresh_token=&code=&use_short_term_refresh="

Now that you have been reading through a few pages, you will know already a bit of the item we are
using:

1. We are using Curl, available natively on any Linux distribution

2. We are using POST, which means we are sending something to the Server (user and
credentials in this case), hoping to obtain a response based on those

3. We use some Headers; in this case, we are using the application/json, the specific API
revision we want, and finally, the application/x-www-form-urlencoded

4. We include the /d (the data we are sending over) to finish the API call, using basic OAuth 2.0.
There you can see you need to add your user and pass

The good news is, if everything goes as expected, the Server will answer with a 2xx response,
including something like the example above.

From here, you have a valid Auth Token that expires in 900 seconds (this time depends on the API):

Page | 9 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

{

"access_token":
"eyJhbGci0iISUzZUxMiIsImtpZCI6IjM3RjIIMEMARDQONFhERDEYNKFFRKkZCNDCc4RjgWMERBQTZEMEQ2Qjcil CI@eXA10iIKV1QifQ.eyI1bmlxdwV
fbmFtZSI6IkpPUKdFREVMQUNSVVpcXGFkbWluaXNOcmFOb3IilCJuYmYiOjE2NDQ4Mzgz0TQsImV4cCIGMTYONDEZzOTISNCwiaWFOIjoxNjQOODM4AMz
kOLCIhdWQiO0iJhY2N1c3MifQ.YIX93yYPy-
CnZgpmC2Vaxkwdh7EiFCFfKmxiTyWKTi4qvUVo203hN7ulnMmhr99r09RAFdIWXgpNMfiWbtPPORWMOOZVWAwWWYZHhENFWCt8ZqQsLKQ6Ypa6ZBvMjgK
SpTBjWeArRMIr-yMSoECYBPsxc8sMhebU7E1g9HAFYT2P421Tt4HgQioi2w3aeRNareD5WDjcgD3NFDWtuvIXxIOWOMYVZIORL5vu4AQyZhhfNQ-
36XSFs2Dzi80xJcfLvTqft86QcP_m-GYOVkYATelZUk8j4NIZU59wcRe2wPbInk9go7QuUCEX8AV-1WCOVPimC4UTexgfpytDdtyXMiu_BzZw",

"token_type": "bearer",

"refresh_token":
"eyJhbGci0iISUzZUXMiIsImtpZCI6IjM3RjIIMEMARDQONFhERDEYNKFFRkZCNDCc4RjgWMERBQTZEMEQ2Qjcil CI@eXA10iIKV1QifQ.eyI1bmlxdwV
fbmFtZSI6IkpPUkdFREVMQUNSVVpcXGFkbWluaXNecmFOb3IilLCIOb2t1b19pZCI6Ij1jYjg2NmUyLTAGNDYtNGU20CO5YZzQ3LWZiZTASZFIOYTYyOC
IsInNob3J0X3R1cmlfZXhwaXJhdGlvbiI6IkZhbHN1IIiwibmImIjoxNjQOODM4MzkOLCI1eHALOjE2NDYWNDc50TQsIm1hdCI6MTYONDEZzODMSNCwiY
XVkIjoicmVmcmVzaCl9.XEhsuh88Ms6kbmDgdHVDcOQTWCYUCE-bPOUIvxgIbjQnISh3mMYWGst_oPcZEvxV7gkysJstIFy CFcAuVc-
uk9pjPK9c329F4WDpLMMDMISoZdTy6jmsANk1hZkuEyx51CDbVcXRFtUXWZ3Y2xtwKIaSN420EO8C3Awhz -
c9Bh1Z0mbGH4ZetY725b9tLFW17NSQ4jhjdTIrA2ifAES-
P2WZqcuO05tmIn9kk2LxoIImVVXh5QyYNG8RE_XEHzZ100QQc0UqU3XxC6nd3VfukSXImEQS3WNkVyrMGzxax3uVxzsf8ETIDMbcWIFWK10CNE1f4I1s
UEzmlFaD5TeIqg",

"expires_ 5

".issued" 22-02-14T11:33:14+00:00",

".expires": "2022-02-14T11:48:14+00:00"

}

Working with Authorisation Response data
Response data can be simple data structures combined to make more complex ones.

This data is usually a mixture of two structures: an array known as a list and an object known as a
dictionary. Different languages have different terms for these structures, but they do the same thing.

We will use the terms Array and Object for the remainder of this Whitepaper for ease.

What are Arrays
Arrays are a method of holding several elements together, such as numbers, strings (text), or other
Arrays and Objects, as we will see later.

Here is an example of an array of numbers:

Arrays are indexed, which means you can access an element but reference its location.

This would result in reference to the number 1 as arrays are zero-indexed.

Another example:

[{“tem”:

Again, this shows an array of objects to get the first value; you specify the index like before.

Page | 10 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

What are Objects?

We have seen objects previously when creating headers and object "objects"; these look very similar
to the JSON format. These are a series of key= value pairs separated by a colon. Multiple values can
be created inside an object, including other objects.

myObject = {
“item”: 1,
“info”: {
“infol”: 2,

“info2”:

o

This is an example of an object within another object; these are very common in responses.

You can also embed arrays in objects like so:

myObject = {

“item”: 1,

“info”: {
“infol”: 2,
“info2”: 3
1

“myArray”: [1,2,3,4,5]
}

To access the data within an array, you must provide the key to get the value. Using the example
above to get the "item" value, you need to do one of the following.

myObject[ 'item']

myObject.item

Practical Use
Earlier, it was mentioned that we needed to pull the Token out of the response to create the Header
for future requests after authentication.

Using the techniques above that become relatively trivial, the examples below use Python syntax,
but the general method is similar to other languages.

Basic Auth

token = response[ ‘X-RestSvcSessionId’ ]

Note that the key in Basic Auth has an invalid character for the "dot" notation shown in a previous
example.

OAuth
token = response.access_token
token = response[ ‘access_token’]

These techniques can construct the new Header required when sending future requests.

One method is to construct the new Header manually and add the correct key value.

Page | 11 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Basic Auth

token = response[ ‘X-RestSvcSessionId’ ]

new_header = {
“accept”: “application/json”,
“X-RestSvcSessionId”: token

¥

OAuth

token = response[ ‘access_token’ ]
new_header = {
“accept”: “application/json”,
"x-api-version": "1.0-revl",

“Authorization”: “Bearer ” + token

}

Various other formatting methods from different languages allow for a similar method of adding to
an object.

Further techniques and tools will be discussed on pulling out relevant data from API responses later
in the Whitepaper.

Page | 12 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Using the API

Now that we are ready to go, it is time to make an authorised request; however, we need to know
what request we need to send before we do that.

Working with the Documentation
One important aspect of using APIs is reading the Veeam documentation on constructing the
request. The Veeam Help Center has extensive information on all the products that support APlIs.

e https://helpcenter.veeam.com/

For example, you wish to request the Veeam Backup for Azure API to get a list of the restore points,
so, on the Help Center, you will select Veeam Backup and Replication and select the REST API
Reference:

Veeam Backup & Replication ’ n

All types ’ English

Veeam Backup & Replication

PRODUCT GUIDES

Veeam PowerShell Reference html

Veeam Explorers PowerShell Reference html

Veeam Backup & Replication REST APl Reference # html

Veeam Backup Enterprise Manager REST API Reference html

Once we are on the REST API Reference, we can use the search to guide us. Imagine you are looking
to get the Job Sessions:

Page | 13 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

VEEAM  veeam Backup & Replication 11.0
HELP CENTER REST API Reference

QU sessions fm—— x

=m) Get Session Get All Sessions

Sessions

s Get Automation Session The HTTP GET requestto the /api/wl/sessicns path allows you to get an array of Sessions
performed on the backup server

[A BACK TO OVERVIEW

=3 Stop Session

) Get Session Logs

e Bearer
=3 Stop Automation Session

1 Get Automation Session Logs

Get All Sessions h S e
} Bk nteger <int3

y Get All Automation Sessions = Number of sessions to skip

S L=t 2] i n

Maximum number of sessions to retum

Login >

The request format is shown as:

GET https://<hostname>/api/vl/sessions

It also provides options that can be added to the request as "query parameters" to specify specific
items, a range of items, or filters based on various parameters.

For example, if you want to modify the maximum number of sessions, we can use the next as part of
the URL.

https://<hostname>/api/vl/sessions?1imit=10

The question mark defines the start of the query parameters, and these can be chained to create
more refined requests by adding an ampersand.

https://<hostname>/api/vl/sessions?1limit=10&typeFilter=Job

Each APl document has a section called "Query Parameters", which details other options such as
limiters, offsets, and search patterns. For example:

https://helpcenter.veeam.com/docs/backup/vbr rest/queries.html?ver=110

The Documentation also provides extensive information on the data that will be received back from
the API, including types and an example of the structure of the response object. This is particularly
important if you use strongly typed languages like C# or Golang.

Page | 14 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Making an Authorised GET request

Continuing using Curl as an example, sending a request to the APl endpoint shown above will look
like this:

curl -X GET "https://YOURVBRIP:9419/api/vl/sessions?1limit=10&typeFilter=Job" -H "accept: application/json" -H
api-version: 1.0-revl" -H "Authorization: Bearer
eyJhbGci0iJSUzUxMiIsImtpZCI6IjM3RjIIMEMARDQONFhERDEgYNKFFRkZCNDc4RjgWMERBQTZEMEQ2Q]jcilCI0eXAi0iIKV1QifQ. eyI1bmlxdWVF
bmFtZSI6IkpPUkdFREVMQUNSVVpcXGFkbWluaXNecmFOb3IilCIuYmYiOjE2NDQANDA2MDcsImV4cCI6MTYONDEOMTUWNYwialWFOIjoxNjQOODQWNIA

3LCIhdWQi0iJhY2N1c3MifQ.HIa3fd-F2bXurbLcZ5KhyglT8QjHhz04f12-C75gnKenB74Fr18viWTvCwr8-
JVvP13GAKeG5ujfL2Y86aeNLFIVFSIDEXK9CA99XvVKG_SV7zBemAY2kTpETKzXEoXxSQOQINN11x4qdouL6IX7d94XLa5y6nrWZHOOibOyxDXz -
hPFsAHZZ2HxSfOmv-_Wf7NsbCFOrSH_QexncxgqPJ_KolG81runsVTbmJELeM7tcW7x2PkkKjOtgXW- -
d2A5NECUuIcI9Pn2WmBDmMHzi8pyaAaiEGYyD_tDROEmcTYDaEwmv30JsBb55yvyn5Cw--GQ7woN8ylqdEbAcnu8UNb1pKA"

Let's split this query a bit:

1. We are using Curl, available natively on any Linux distribution

2. We are using GET, which means we are expecting information if we are properly
authenticated

3. We are using the VBR API IP, Port, the specific endpoint we want, with some filters

4. We use some Headers; in this case, we are using the application/json, and the specific API
revision we want (this varies between the products)

5. We are trying to run this query using our Authentication Bearer; please refer to the Auth
section if you are in doubt

The result of that specific endpoint will look something like this:

{
"data": [
{
"sessionType": "Job",
"state": "Stopped",
"id": "b8fd1065-5caa-4e61-b301-e3122d200b89",
"name": "VMware - Create NetApp Snapshot",
"activityId": "3bad9a4f-efe3-4cd@-bfdc-7bfoalc8cade”,
"creationTime": "2022-02-14T712:10:21.48+00:00",
"endTime": "2022-02-14T12:10:30.013+00:00",
"progressPercent": 100,

"result": {
"result": "Failed",
"message": "Failed to create processing task for VM NGINX-004 Error: Cannot access VMX file of VM [NGINX-

"isCanceled": false
b
"resourceld": null,
"resourceReference": null,
"parentSessionId": null,
"usn": @

The result is self-explanatory; it does include the name of the Job, the endTime, the result, an
additional message, etc. It is usually an array with information so that we can grab the most
important and useful data for us. We will take a quick example of how to parse the data later.

Swagger Ul

Getting our hands dirty using Curl, Python, or Bash is nice; in the end, we will need some
programming language to build scripts that downloads data or automate and orchestrate things.

But over the years, what we have found is that having a web portal where you can run the queries to
obtain the data, do the auth, etc. It is more than enough for some Customers, plus the "baby first
steps" that we all need.

Swagger allows Veeam to describe the APIs' structure and wraps them up on a very simple and nice
web interface that we can leverage to perform all the tasks.

Page | 15 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Let's take the Veeam Backup and Replication APl and use the Job Sessions example once again.

Swagger Login

Every product has its own Swagger on different ports. We recommend looking into the Help Center,
searching for the product you are trying to access, and getting the Swagger URL and port from there.
On Veeam Backup and Replication, the Swagger can be found under:

e https://VBRIP:9419/swagger/ui/index.html

Veeam Backup & Replication REST AP| &= &

This document lists paths (endpoints) of the Veeam Backup & Repiication REST AP and operations that you can perform by sending HTTP requests to the paths

Requests can contain parameters in their path. query and header. POST and PUT requests can include a request body with resource payload. In response, you receive a conventional HTTP response code, HTTP response header
and an optional response body schema that contains a result model.

Parameters, request bodies, and response bodies are defined inline or refer to schemas defined globally. Some schemas are polymarphic.

Contact the developer

Servers

Login [Neautorization process invoives ootaining an access token and a refresn token >
g For details on the authorization process and security settings, see the Authorization and Security section of the Veeam Backup & Replication REST API Reference.

Service The Service section defines paths and operations for retrieving current date and time and a certificate of the backup server where the REST API service is running. >

& The Services section defines a path and operation for retrieving information about associated backend services. You may need to connect to these services for integration with Veeam Backup & >
SEYVICES Replication only

API| Credentials and Bearer
As mentioned before, we will always need a Token to perform any action inside the API; let's get our
Token now. As simple as click under Login = Try it out = Introduce credentials = Execute

Request body [ form-ur > ]

grant_type

tring Authorization grant type.
Available values:

« password — used to obtain an access token by providing a user name and password
« refresh_token — used to refresh an expired or lost access token by providing a refresh token.
« authorization_code — used to obtain an access token by providing an authorization code.

password v

username
A User name. Required if the grant_type valueis password
string =
jorgedelacruz\administrator
Send empty value
password
 frive (spa==toed) Password. Required if the grant_type valueis password

Send empty value

use_short_term_refresh

boolean If true, a short-term refresh token is used. Lifetime of the short-term refresh token is the access token lifetime plus 15 minutes.

Send empty value

Page | 16 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

This will make the API call, and you will be able to see the Bearer token:

i oken™ -H “accep!
gedelacruzXSCadministrator&password:

Request URL

htty 192.168

Server response

Code Details

20 Response body

“access_token™:
" eyINbGCi01 ISUZUXMI TS TmtpZCT6T 3R TIMEMARDQBN jh ERDZYNKF FRKZCND CAR JEWMERBQTZ ENE Q201 ¢ 1L CI0eXAI0ITRVIQE FQ. ey 1bmIx WV FbmF £ ZS T6TkpPUKAF REVMQUNSYVPCXGF Kb 1uaXNBCmF8b3 T L CIuYmY 0 JE2NDOANDAZMD C sTRVACC
T6MTYONDEOMT hebiywiabiF &1 joxNFQ00D0WNA3LCIhdWQi0i ThY2NLc3Mi FQ. HIa3fd-F2bXurbLcZ5Khye] TBQHhZ0412-C75gnKenB7 AF r18viTvCwrS-
IvP136AKeG5u L 2¥86aeNL FIVF S1DEXKICAS9XvKQ_SV7zBemAY2KTpETKzXEoxSQOQINNT 1x4qdTul 61X7d94XLaSy6nriZHBAibO0yXDXz - hPF sAHZZ2HS Famv-_WF7NSbCFOrSH_QexncxqPd_KolG81runsVTbmIELeMTt cW7x2PkkKj0tqXi--
d2ASNECUUTCTIPR2ZWmBONH2 18pyaAai EGYyD)_tDROERCTYDAEWWY3015BbSSyVynSCu--G07WoN8y1qdEbACnUBUNBIDKA® ,

“token_type

"eyIhbGCi 01 ISUZUXMA TsTmtpZCT6TJM3RFT1MEMARDQAN h ERDZYNKF FRKZCNDCAR JEWMERBQTZ EMEQ2Qr ¢ L CI0eXATOTIRVIQH £ . ey T1bml WV FbmF £ 7S T6 TkpPUkdF REVMQUNSVVPCXGF Kb 1uaXNCmF8b3TLC10b2t1b19pZCT6T JYXMTNANTMOLT
AwY JQENDRINCE4Y§Q3LHQBOTE SN icuNzCOZiLs InNob3J6X3R1 cmnd  ZXiwaX I hidGlvbi 16 TkZhbHNLL iwi bmJmLj 0xNFQBO0DQWN JA3LCT1eHAIOTE2NDYWNT AyMDcs Im1hdC IGMTYBND g@MDY\ellywi YAVK L joi cuVmcnVzaCJ9. Xy_JK9-3zYizdPZSfs20Ep-
2x6dqBaSFsTS JhSMYxiht6149 1§ T1aD-Paxa7mvd10R7 Mt -FuKwOTNVTNt Rdgzal Txioaneno_ASbhzNd981s468VuMF Qhidds-732YVpNEwTK §94mV9_vy7L 5hi3E7i 1k] -dowPginoK 14 AKIZYTT-

8bi pnYL tNERNaFBBp4ad0AD TbRL hoXGeaTdqnO_TRIGMBURT cTbDZ5747YANPXIyeTapam_CdichaP] 2wl Relei oGHDxXg BevadNBK28UQVOKxba19x1 tyjNED3F3a0U7 TVIRrUGh 1aHCMX2Pe - 08STGZQKTVSNYULA®,

Response headers

access-control-allow-origin: *
content-length: 1456

content-type: application/json; charset-utf-8
date: Mon1d Feb 2022 12:19:@7 GHT

server: Microsoft-HTTPAPL/2.0

Responses

Let's copy the whole Token, inside the double quotes after access token; now we go to the top right
where it says Authorize, a popup will open, on the text field, introduce Bearer YOURLONGTOKEN
(the Token you have copied before)

Available authorizations

Bearer (apiKey)

Access token in the Bearer <access foken= format
Name: Authorizaf

In: heager

Vals

Job Sessions API call using Swagger
We are almost there; once logged in, we can walk through the different endpoints, for example, the
Job Sessions; let's click on Try it out, scroll till the end, and press Execute:

Sessions The Sessions section defines paths and operations for managing sessions (except automation sessions) performed on the backup server

/api/vi/sessions GelAl Sessions _ &

The HTTP GET requestto the /api/v1/sessions path allows you o get an array of sessions performed on the backup server.

Name Description
x-api-
wrareinn ® reauirs Varcinn and ravicinn of tha Aliant REQT API Mnect he in the fallawina farmat- <usrcinn>_<ravicinns

Page | 17 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architeot

You will see the result of your query, right there, in JSON format:

Curd
19/api/vi/sessions?1imit=108typeFilter=Job™ -H “accept: application/json” -H "x-api-version: 1.8-revi® -H “Authorization: Bearer

curl -X GET "https://192.168.1.4:
eyIhbGei0iISUzUxMITs Tt pZCT6TM3R T 1MEMARDQBN hERDEYNKF FRZCNDCAR jEwHERBOTZEMEQ2QCi L C1BeXAi0i IKVIQi FQ - ey J1bmxdWV-FbmF ST 6TkpPUKAFREVMQUNSVVpCXGF kb1 uaXNBcmF8b3T: L CIuYmYi 05 E 2NDQANDT zNDY s TmV4 CTGMTYBNDEOMZTE

Niwi alF @130xNjQO0D0yMzQ2L CIhdNQi 03 ThY2NLC3Mi Q. H3AP WhyBShuhRARQFKADikcs je fF54pLE_ m1IES0F 25tYZUB53UreFXcxThaFKuwdfFL-rRXBKSN2D9z0 1zB0VReQBumnUTuufhNtFOBGEIKXLKMVX10S-
rGP1a0EdTYHsmi103Re3ZNIFiBU_ZX3VRCOTyZBmxnGBx FwoArIcaekdA3U6e0dPPTPLAiHYSEKLXOFSNFuUQ4zKZTdD_Bapbcl jyiolRWVZPSKVOQnZHZnIFGLavn-
gahm j_HfDmhFCU2vRIpeEVKADFFXURSChSHDaF KXEVHSnNF b6UEOZTdVT EChgrHQSZWFICHQUI9 1 PPNDPGDEQEASA™

Request URL

https://19:

Server response

Code Datails

e Response body

ed”,
task for VM NGINX-084 Error: Cannot access VMX file of VM [NGINX-804]",

ailed to create processing

arentSessionId

Response headers

Swagger is a great way to explore the information, and from there, start building more complex

applications, utilities, reports, etc.

Page | 18 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Postman
An alternative method of calling Veeam APlIs is using Postman, which is available free from
https://www.postman.com/

Postman makes it easy to send requests to APIs without code which can be used to learn the API's
structure.

File Edit View Help

Q Home Workspaces v  APINetwork v  Reports Explore Q search Postman o S < s 0 ® Upgrade  ~
® New mport [ veoambackp8R. X e localhost v e
15} | = Veeam Backup & Replication REST API @ Watch |0 % Fork | 0 [¥]Run /> Share o0 B
B > Veeam Backup & Repilcation REST API
Authorization @ Pre- . =
13 s etliiadt 3 =
&
dae This authorization method wil be used for every request in this collection. You can override this by specifying one in the request.
o)
[E]
ronmes Type APIKey 4 n
The W
Lea :
®
penters o® X
v Key Authorization
it
Value <APIKey>
anito Header v
E] QFindandReplace [ Consala  Capture requests and cookies ' Bootcamp ] Runne H e

Veeam maintains a Postman collection of API calls that can be imported so you can quickly get going
with APls.

https://github.com/VeeamHub/veeam-postman

Download the files from VeeamHub, then click "import" on the appropriate Postman JSON file.

Some APIs require you to log into the Swagger interface and download the JSON file.

Veeam Backup & Replication REST AP] =2 &
¢ fm——

[swagger/-rev

son

This document lists paths (endpoints) of the Veeam Backup & Replication REST API and operations that you can perform by sending HTTP requests to the paths.
Requests can contain parameters in their path, query and header. POST and PUT requests can include a request body with resource payload. In response, you receive a
conventional HTTP response code, HTTP response header and an optional response body schema that contains a result model

Parameters, request bodies, and response bodies are defined inline or refer to schemas defined globally. Some schemas .are polymorphic.

You can use this JSON file as if you were to import it from the downloaded Repository.

You will then see the various requests that can be sent listed.

v B inventoryivmware/hosts
w  CET Get All VMware vSphere Ser_.
0K
Unautherized. The authori...
Forbidden. The user sendi...
Internal server emor. The r...

¥ GET Get WMware vSphere Server...

Page | 19 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

You will note that the URLs have double curly brackets around usually the beginning of the URL.
These represent variables and makes it easier to upload all the calls in one go.

[~ 15 | Get All Jobs

GET v | {[baseUrl}}fapi/vifjobd

There are Global and Local variables, but usually, you will want to set the local variable.

~ Veeam Backup & Replication REST AP 37 ooe
W api : i
EI View more actions
> Bwn
[ oauth2

Enter the start of the URL in the variable.

Authorization @ Pre-request Script Tests Variables @

These variables are specific to this collection and its requests. Learn more about collection variable
VARIABLE INITIAL VALUE @ CURRENT VALUE @

E baselrl https://your-address: 9194

The Veeam Postman Collection is well documented and will help with working with the application.

Page | 20 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Making POST & PUT requests

GET requests are relatively simple as you only need to provide the information in the URL. POST
requests require you to provide information in the Body of the request. A good example of this is
with the Authorisation as seen previously.

Here are some examples of POST requests.

PowerShell

$Body = @{
title= ‘Veeam API Whitepaper’
body= ‘Do Whitepaper’

}
Invoke-WebRequest -URI https://jsonplaceholder.typicode.com/posts -Body $Body -Method 'POST'

Curl

curl --data' {"title": "Veeam API Whitepaper", "body": "Do Whitepaper"} 'https://jsonplaceholder.typicode.com/posts

Note: Jsonplaceholder is an example of a free open public API that allows you to test out using APIs.

In both commands, we add data to the post request in the "body", the normal location for the data,
also known as the "payload".

There is also another structure called the "Request header", which provides information to the API
about the request context. This can include what type of data you wish to receive from the API if
there is a choice, e.g., Veeam Enterprise Manager.

The Headers are also often used to hold Authorisation data to allow the request to be serviced. This
will be covered later in this Whitepaper.

Both the Body and the Headers are held in what is called a JSON string, which is a series of key-value
pairs with outer curly brackets and the keys separated by the values using a colon.

Advanced manipulation techniques

There are a few options to manipulate the data we obtain. The first and always recommended will
be the Veeam Query Parameters we mentioned before, like skip, limit, Sort, Filter, etc. So, we
reduce the pressure on the Server by just querying what is relevant.

Once we have the JSON response that we like, remember the Job Sessions one, we can quickly see
that there is a lot of information that perhaps we do not need, or imagine if you want to grab some
of that information and put it into variables.

To do this, we will use jq. Jq is like the Linux command sed; you can use it to slice, filter, map, or
transform structured data in JSON format. Other languages have methods to do similar things.

Jq could be used online by pasting your JSON into, for example, jgplay.org. To understand a bit more
about jq, please do visit their manual:

e https://stedolan.github.io/jg/manual/

This Whitepaper is not aimed to make you a Jq expert, but we will share some of the basic examples
so you can get your head around it; from here, please ping us on the forums or social media.

Page | 21 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Example — Using Jq to parse the Job Sessions JSON response

Let's take as an example the Job Sessions. We have explained already what an array is, objects, etc.
Quickly coming back into that part, we can see that this JSON has an array called data, and inside
every group of objects are linked to a specific Job session:

{

"data": [
{
"sessionType":
"state": "Stopped",
: "b8fd1065-5caa-4e61-b301-e3122d200b89",

: "VMware - Create NetApp Snapshot”,
"activityId": "3bad9a4f-efe3-4cd0@-bfdc-7bfo@aec8cade”,
"creationTime": "2022-02-14T712:10:21.48+00:00",
"endTime": "2022-02-14T12:10:30.013+00:00",
"progressPercent": 100,

"result": {
"result": "Failed",
"message": "Failed to create processing task for VM NGINX-004 Error: Cannot access VMX file of VM [NGINX-

"isCanceled": false
b
"resourcelId": null,
"resourceReference": null,
"parentSessionId": null,
"usn": @

Example jg grabbing the name, endTime, result, and message from the last job
Let’s try to grab the information from the last job:

jq '.data[@] | .name,.endTime,.result.result,.result.message’

The result of this will be like this:

VMware - Create NetApp Snapshot

2022-02-14T12:30:53.713+00:00

Failed

Failed to create processing task for VM NGINX-004 Error: Cannot access VMX file of VM [NGINX-004]

As you can see, you have taken out all the JSON complexity and just grabbed everything you needed.

Let's write another example; imagine that the array is too long, and you only care for the jobs that
start with "VMware ..." or any other string; you could use the select option together with jq, like this:

.data[] | select(.name | startswith("VMware"))

The result of this will give you all the information from the job sessions, that starts with VMware:

"sessionType": "Job",
"state": "Stopped",
"id": "b8fd1065-5caa-4e61-b301-e3122d200b89",
"name": "VMware - Create NetApp Snapshot",
"activityId": "3bad9a4f-efe3-4cdo-bfdc-7bfoalc8cade”,
"creationTime": "2022-02-14T12:10:21.48+00:00",
"endTime": "2022-02-14T12:10:30.013+00:00",
"progressPercent": 100,
"result": {
"result": "Failed",
"message": "Failed to create processing task for VM NGINX-004 Error: Cannot access VMX file of VM [NGINX-004]",
"isCanceled": false
b
"resourceId": null,
"resourceReference": null,
"parentSessionId": null,
"usn": @

Page | 22 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

There are many other ways to manipulate the data that comes back from an AP, jq is just one of
many, and each language has its own method of doing it.

To see the same process using Python, please see Appendix A.

Conclusion

The use of APIs is an extremely powerful and flexible method of reporting and managing a Veeam
backup environment.

It allows you to take full control of Veeam operations in the way that works for you, with whatever
tool or codebase you want, and from anywhere there is connectivity. Do you want to connect using
Golang in a K8s container or create a custom widget on your Desktop that pops an alert on a
successful backup? It is all possible.

We hope that this Whitepaper has provided you with the initial basis of the benefits and use of
Veeam APIs. It empowers you to see the potential of leveraging them in the future.

Page | 23 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Appendix A — Python JSON Manipulation

Using the same response as shown in the Advanced manipulation techniques section:

{
"data": [
{
"sessionType": "Job",
"state": "Stopped",
"id": "b8fd1065-5caa-4e61-b301-e3122d200b89",
"name": "VMware - Create NetApp Snapshot",
"activityId": "3bad9a4f-efe3-4cde-bfdc-7bfoadc8cade”,
"creationTime": "2022-02-14T12:10:21.48+00:00",
"endTime": "2022-02-14T12:10:30.013+00:00",
"progressPercent": 100,
"result": {
"result” iled",
"message": "Failed to create processing task for VM NGINX-004 Error: Cannot access VMX file of VM [NGINX-

"isCanceled": false
b
"resourceId": null,
"resourceReference": null,
"parentSessionId": null,
"usn": @

To get a similar result as shown in the above section, we will use the "tabulate"® library:

from tabulate import tabulate

data = jobSessions|['data']

headers = ["Name", "End Time", "Result", "Result Message"]
results [1]

for i in data:
results.append([i[ 'name'], i['endTime'], i['result']['result'], i['result']['message']])

print(tabulate(results, headers=headers, tablefmt="grid"))
mmm e B R Fommmmmmm e B T +

| End Time | Result | Result Message

| VMware - Create NetApp Snapshot | 2022-82-14T12:10:30.013+00:00 | Failed | Failed to create processing task for VM NGINX-@04 Error: Cannot access WMX file
of VM [NGINX-004] |

R e e e B R R e e e TP +

Note this assumes that the variable "jobSessions" holds the "data" object.

A loop allows for multiple entries to be displayed in the table.

6 https://pypi.org/project/tabulate/

Page | 24 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

Appendix B — Quick example using Bash Shell

Over the last few years, we have seen multiple projects emerging into the Veeam Hub that leverages
all Veeam APIs and transforms those into beautiful Grafana Dashboards or useful HTML Reports.

Suctioss.
EC2 Policy Backup: AWS EC2 - Snapshols and Backups ol VM processed
Friday, June 11, 2021 11:59:53 AM
Start time 930013 711
End time 030625 PM

Duration 12

Details

st .
Srtr 138 Uetred, O
T P
09:01:41 PM 156 M tranfared.
08:02:41 PM 10.8 M transfarred.
e . e s -
Failed Failed Failed Success Warning Warning
i i ; i e L i i e
Success Success Success Success Success Success £ Pyl o A D il iyt O et

Friday, June 11, 2021 11:59:53 AM

No data No data No data Success Success Success e
[——— P —— - s = T o - 2 Laurran Duration
Details
Success Success Success Success Success No data i iz — L

EC2 Srapsiiot 09:0031 P11 NA o 1mes
oL s

12:00:33 0 N

EC2 A |
EC2 09:00:34 PM NA L2 S
i CE D00:34 oM WA thiimeis
Success Success Success Success Failed Success Success Success Nodata Nodata Success Success i A - i e Sy
S ) Wl (e (i - - - —
- Backup: WPC Conliguration Backup of Vs processed
Success Success Success Succese Fajled Success Success Succese Success Succees  Nodata Warning i
Frit June 11, 2021 11:58:53 AM
Start time. 08:00:02 PM
Fod time OR-00:23 P
Duration ohtm: 195
Details
name 1ob Type. Status | Start time Transferred  Duration
EU Central 5 VEC Backup Success |0:00:00 P NfA Oh:0m:3s
Sucenss
ol VMs processed

Friciay, June 11, 2021 11:59:53 A
Start time.

End time

Duration

Details

Status. Start time. Transferred  Duration
Suctiss 03:00,08 FM nin Ofidrc12:

HTML Custom Report - Veeam Backup AWS 1

Grafana Dashboard for Enterprise Manager 1

These examples have been built using Bash Shell Script, let’s take a look at some parts of the Scripts,
knowing now all the basics, we should be able to read a bit what they do:

Looking at the Bash Shell Script for Enterprise Manager, we can see at the top that is asking for
some system variables like user, password, IPs, etc:

# Endpoint URL for login action

veeamUsername="YOUREMUSER"

veeamPassword="'YOUREMPASSWORD '

veeamJobSessions="100"

veeamAuth=$(echo -ne "$veeamUsername:$veeamPassword" | base64);
veeamRestServer="YOUREMSERVERIP"

veeamRestPort="9398" #Default Port

veeamSessionId=$(curl -X POST "https://$veeamRestServer:$veeamRestPort/api/sessionMngr/?v=1latest" -H
"Authorization:Basic $veeamAuth"” -H "Content-Length: @" -H "Accept: application/json" -k --silent | awk
'NR==1{sub(/~\xef\xbb\xbf/,"")}1"' | jq --raw-output ".SessionId")

veeamXRestSvcSessionId=$(echo -ne "$veeamSessionId" | base64);

timestart=$(date --date="-1 days" +%FT%TZ)

Page | 25 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



From The Architect

That was easy; it even manages the whole auth for us and puts the SessionID that the VEM API
needs into a variable called veeamXRestSVCSessionld. Let's take a look at the next part; a few
interesting parts here, like:
e We can see that we build first the full API URL we will query, in this case, the
/api/reports/summary/overview
o Then the script does the curl query to the URL, using all the SessionID, and all the needed
headers, and saves the output into another variable called veeamEMOUF|.
e Finally, using the magic of jq, we simply extract the objects we want and save them into
variables, like veeamBackupServers, etc.
o The last step, in this specific case, is to echo the results on the console (on an InfluxDB
format, meaning we can push those later on to InfluxDB, or any other Monitoring tool, by
adjusting what the Monitoring tool expects)

H##
# Veeam Enterprise Manager Overview. Overview of Backup Infrastructure and Job Status
#H#
veeamEMUrl="https://$veeamRestServer:$veeamRestPort/api/reports/summary/overview"
veeamEMOUrl=$(curl -X GET "$veeamEMUrl" -H "Accept:application/json" -H "X-RestSvcSessionId:
$veeamXRestSvcSessionId" -H "Cookie: X-RestSvcSessionId=$veeamXRestSvcSessionId" -H "Content-Le : 0" 2>&1 -k --
silent | awk 'NR==1{sub(/~\xef\xbb\xbf/,"")}1')

veeamBackupServers=$(echo "$veeamEMOUrl" | jq --raw-output ".BackupServers")
veeamProxyServers=$(echo "$veeamEMOUrl" | jq --raw-output ".ProxyServers")
veeamRepositoryServers=$(echo "$veeamEMOUrl" | jq --raw-output ".RepositoryServers")

veeamRunningJobs=$(echo "$veeamEMOUrl" | jq --raw-output ".RunningJobs")
veeamScheduledJobs=$(echo "$veeamEMOUrl" | jq --raw-output ".ScheduledJobs")
veeamSuccessfulVmLastestStates=$(echo "$veeamEMOUrl" | jq --raw-output ".SuccessfulVmLastestStates")

veeamWarningVmLastestStates=$(echo "$veeamEMOUrl" | jq --raw-output ".WarningVmLastestStates")
veeamFailedVmLastestStates=$(echo "$veeamEMOUrl" | jq --raw-output ".FailedVmLastestStates")

echo "veeam_em_overview,host=$veeamRestServer
veeamBackupServers=$veeamBackupServers,veeamProxyServers=$veeamProxyServers,veeamRepositoryServers=$veeamRepository
Servers,veeamRunningJobs=$veeamRunningJobs, veeamScheduledJobs=$veeamScheduledJobs, veeamSuccessfulVmLastestStates=$v
eeamSuccessfulVmLastestStates,veeamWarningVmLastestStates=$veeamWarningVmLastestStates,veeamFailedVmLastestStates=$
veeamFailedVmLastestStates"

We hope these examples are useful to you, and you could start leveraging all the Veeam APIs and
adjusting the output to your requirements or tools.

Page | 26 Getting Started with Veeam REST APIs  Authors Edward Howard & Jorge De LaCruz ~ V.1.0



