

Designing a Kubernetes
Disaster Recovery

strategy

Patricio Cerda

2023 v1.0

2 | P a g e .Cerda v1.0 2023

Contents

Executive Summary ... 4

Why do we need a Kubernetes Disaster Recovery Strategy? .. 4

Microservices and Kubernetes .. 4

Stateful vs Stateless applications .. 6

Do we actually need to protect Kubernetes workloads? .. 6

Choosing the right solution ... 7

Kubernetes Disaster Recovery Strategy .. 9

Kubernetes Native Backup Solution .. 9

CI/CD for automation and rapid rollbacks ... 9

Where to store my backups? .. 10

Approaches for Disaster Recovery strategy with Kasten .. 10

Option 1: Disaster Recovery using Kasten Export/Import features. .. 11

Stage 1: Protecting our applications ... 12

Configuring Location Profiles .. 12

Creating Kasten K10 Export policies ... 14

Getting the Import Data.. 15

Stage 2: Importing the applications in the target cluster .. 17

Configuring Location Profiles .. 17

Creating Kasten K10 Import policies ... 17

Stage 3: Restoring Applications after a Disaster ... 19

“Restore after Import” option NOT selected .. 19

3 | P a g e .Cerda v1.0 2023

“Restore after Import“ option selected .. 24

Stage 4: Make the applications accessible .. 25

Option 2: Disaster Recovery using Kasten DR feature ... 27

Stage 1: Enable Kasten Disaster Recovery feature .. 28

Stage 2: Protect our applications .. 30

Stage 3: Restore Kasten configuration after a Disaster ... 31

Stage 4: Recover the cluster-scoped resources. ... 33

Stage 5: Restore Applications .. 34

Stage 6: Make the applications accessible .. 37

How to choose the Disaster Recovery Strategy ... 39

Using Kasten Export/Import features ... 39

Pros ... 39

Cons .. 39

Using Kasten Disaster Recovery feature ... 39

Pros ... 39

Cons .. 40

How to Automate the Disaster Recovery Strategy .. 40

Deploying the Kubernetes clusters ... 40

Deploying Kasten K10 .. 40

Exporting and Importing Applications with Kasten ... 41

Using the Kasten Disaster Recovery feature ... 41

Restoring applications ... 41

About the Author ... 42

About Kasten by Veeam .. 42

4 | P a g e .Cerda v1.0 2023

Executive Summary

Applications have been quickly evolving from monolithic and virtualized approaches to microservice-based
architectures, where Kubernetes has emerged to become the de-facto container orchestration platform.

Regardless the application’s architecture, data is always going to be the most important asset in any company, so
protecting it is paramount. Therefore, as with any other approach, when using microservices with Kubernetes it is
key to have a proper Data Protection strategy, including a proper Disaster Recovery Plan.

This whitepaper provides some recommendations and best practices to create a Disaster Recovery Strategy for a
Kubernetes infrastructure, and all the applications running on it, by using Kasten by Veeam. These
recommendations include the use of automation tools, which make i–t easier to design of the Kubernetes Disaster
Recovery strategy in a DevOps context.

Why do we need a Kubernetes Disaster Recovery Strategy?

Microservices and Kubernetes

Microservices (sometimes referred simply as containers) are at the heart of cloud-native business transformation
initiatives, and they are a natural evolution from virtual machines to a more granular and portable application
environment.

Containers are designed to support rapid development and deployment of cloud-native applications in a DevOps
model. This DevOps model it’s basically a set of practices that combines software development and IT operations,
where development and operations teams are no longer separated silos but are now working together in a more
flexible work model.

5 | P a g e .Cerda v1.0 2023

As applications grew to span multiple containers across multiple servers, Kubernetes emerged to become the de-
facto container orchestration platform, designed to completely manage the life cycle of containerized applications
and services using methods that provide predictability, scalability, and high availability.

Kubernetes, a powerful open-source system, initially developed by Google and now being managed by the
community and the Cloud Native Computing Foundation (CNCF), it’s not just an orchestration system. Kubernetes
comprises a set of independent, composable control processes that continuously drive the current state towards
the provided desired state. Centralized control is also not required. This results in a system that is easier to use and
more powerful, robust, resilient, and extensible, while eliminating the complexities of infrastructure management,
deployment and scalability of cloud applications

There are many options to deploy Kubernetes, whether in the cloud or on-premises, depending on your business
and technical requirements. Some of the more popular distributions to deliver Kubernetes are:

• RedHat OpenShift

• Amazon Web Services – Elastic Kubernetes Service (EKS)

• Microsoft Azure – Azure Kubernetes Service (AKS)

• Google Cloud Platform – Google Kubernetes Engine (GKE)

• SUSE Rancher

• VMware Tanzu

More information about what Kubernetes is and what Kubernetes is not, can be found in Kubernetes official

documentation: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

6 | P a g e .Cerda v1.0 2023

Stateful vs Stateless applications

Initially, early adopters of a Microservices approach and of Kubernetes were mainly focused on deliver stateless
applications. Stateless applications don’t keep data/information in it, which means no databases, no writes of any
data inside the application, and no left-over files when the pod is deleted. Still, a stateless application can solve
complicated problems by just receiving an input and performing actions which depend on that specific input and the
“state” of the application. These states are pre-defined in the application itself.

Some examples of Stateless applications are Web Applications like Apache, NGINX, etc.

As the cloud-native business transformation initiatives started to growth and get more mature, companies began to
deliver also stateful applications in Kubernetes. Stateful applications are basically applications that can store
information. Here is important to highlight that one of the fundamental principles of microservices is that no data
should be stored within the container itself. So, when we talk about Stateful applications keeping persistent data,
this data is stored outside the pod itself, but can be accessed and/or processed by it.

There are different approaches to store this information, depending on application’s requirements:

• Information could be stored on Persistent Volumes (PV) whether locally or using remote storage solutions.

• Information could be stored on Database services like MySQL, PostgreSQL, MongoDB, ElasticSearch,
Microsoft SQL Server, AWS RDS, and so on.

• Information could also be stored in ConfigMaps, Secrets and others.

Do we actually need to protect Kubernetes workloads?

It’s a common mistake to think that protecting Kubernetes workloads by providing a Backup and Disaster Recovery
solution isn’t actually necessary, whether for the availability and reliability inherited to the Kubernetes architecture,
for the redundancy and availability provided by IaaS providers like AWS with Elastic Block Storage (or even by Storage
Snapshots available in on-premises solutions), or for the possibility of quickly redeploying applications from code
using solutions like GitOps (Infrastructure as Code - IaC) or version control solutions.

These are myths and it’s important to understand the Data Protection gap between the mentioned technologies or
features, and a complete Kubernetes Disaster Recovery strategy. For instance:

• Kubernetes architecture is designed for fault tolerance, which makes easier to ensure application uptime
even if we face partial infrastructure outages. However, it’s important to remember that the high
availability or replication provided natively by Kubernetes it’s not actually a backup, as these features aren’t
meant to be a Data Protection solution by themselves. You still can suffer from data corruption, or
accidental or malicious data deletion, all of which can lead to a catastrophic data loss.

• Etcd backups only capture the state of the Etcd cluster, which includes configuration data, secrets, and
other important information necessary for the operation of a Kubernetes cluster. While this information is
critical, it doesn't capture the state of the actual application workloads running in the cluster. Kubernetes
is often used to deploy complex, multi-tiered applications, which include data stored in persistent volumes
and application state stored in memory. These workloads can be spread across multiple containers, nodes,
and namespaces. Backing up just Etcd does not provide an effective way to restore these workloads in the
event of a failure.

• IaaS providers like AWS advertise a non-zero annual failure rate.

7 | P a g e .Cerda v1.0 2023

• Volume Snapshots for on-premises solutions could look appealing, but these volume snapshots are often
not resistant to hardware failure and even worse, the deletion of a volume usually leads to an automatic
deletion of all related snapshots.

• It’s true we can automate the deployment of application by using GitOps (or any other Infrastructure as
Code solution) or using CI/CD pipelines (used mainly for version control), which could of course streamline
the application recovery process after a disaster. But there is a critical point we are missing here: the Data!
Any of these automation methods that we can use to deploy back the applications after a disaster, will bring
back only the Kubernetes objects and their configurations, but what about the persistent data? Remember,
stateful applications can store data using Persistent Volumes (PV) or databases (relational or NoSQL
databases). All these persistent data isn’t captured when we use any of the automation solutions already
mentioned, so they can’t be considered a Data Protection solution by themselves, though they could be
part of the Data Protection and Disaster Recovery strategy.

Choosing the right solution

When we start looking for a Data Protection and Disaster Recovery solution for our Kubernetes platform, it’s
important to understand the fundamental differences between Kubernetes and any other compute platform that
has come before.

In the past, applications where usually deployed on Virtual Machines (VM) or physical servers creating silos. Even
with distributed applications we were able to map specific applications components to a specific VM or server.
Therefore, traditional backup solutions are usually designed to capture the entire VM or Server when we need to
protect a specific application. In other words, these backups solutions were infrastructure-centric solutions.

The main challenge to protect Kubernetes workloads is
that there is no mapping of applications to servers or
VMs. Now, a single application could be composed by
hundreds of Kubernetes resources (deployments,
services, PV, secrets, ConfigMaps, etc.), all of them
distributed among the available Kubernetes nodes.

In addition, Kubernetes uses its own placement policy to
distribute applications components across all servers for
fault tolerance and performance, which of course makes
kind of impossible to map an application to a specific
server.

We also have to consider the dynamic nature of
Kubernetes and cloud-native applications:

• New applications could be deployed every
single day whether manually or, most likely,
using automation solutions like GitOps or CI/CD
pipelines.

8 | P a g e .Cerda v1.0 2023

• Application management can involve periodic rolling upgrades, and new application components can be
added or removed at any time.

• Pods can be dynamically rescheduled or scaled on different nodes for better load balancing.

• IP address management it’s also quite dynamic and handled directly by the Kubernetes platform, where
every Pod will have an IP address dynamically assigned.

And of course, we won’t have a single application running on Kubernetes. In a Kubernetes cluster we could find
multiple components of multiple applications running altogether, which means the solution should be able to
understand and protect thousands or even millions of components. All of this of course makes it even more
challenging to have a proper Data Protection and Disaster Recovery solution for Kubernetes.

Therefore, the Data Protection and Disaster Recovery solution should be:

• Compatibility with Kubernetes architecture: Kubernetes has a specific architecture and set of components,
including etcd, kubelet, and the API server. A data protection solution for Kubernetes should be compatible
with this architecture and should be designed to work seamlessly with all these components.

• Application-centric, being able to understand Kubernetes constructs, and not infrastructure-centric like
they were in the past, in order to understand the relationship between the application components, and
between the components and their data.

• This solution should also be able to scale-up and down and/or scale-out and scale-in alongside with the
Kubernetes platform and applications to provide the proper performance for Data Protection operations.

• In case of using solutions like CI/CD pipelines to redeploy the applications, the solution should be smart
enough to keep track the relationship between stateful applications and their data (PV, databases, etc), and
therefore being able to perform a data-only restore, whether restoring the PVs used by the application or
restoring data to the database used by it, as required.

• This solution should also integrate with the Kubernetes API to manage backup and recovery operations.
This includes the ability to manage PVs, pods, and namespaces, as well as the ability to schedule backups
and restores.

• A 8good data protection solution for Kubernetes should be automated, making it easy to backup and
recover data quickly and efficiently. This includes automated backups of Persistent Volumes (PVs), as well
as automatic recovery in the 8event of a failure.

• Finally, a proper Kubernetes Data Protection and Disaster Recovery solution should be able to offer multiple
storage options to store the backup data. Immutability it’s also a paramount need nowadays to protect
our data against threads like ransomware attacks.

9 | P a g e .Cerda v1.0 2023

Kubernetes Disaster Recovery Strategy

It’s always important to have a Data Protection strategy in place, alongside with a proper Disaster Recovery Plan.
This of course applies to cloud-native applications running on Kubernetes.

So, what components, solutions and best practices should or could be part of this Disaster Recovery strategy? As
minimum, a proper Disaster Recovery Strategy should include:

• A Kubernetes native backup solution to protect all the applications and their persistent data.

• Automation solutions to speed up the recovery process (RTO) and reduce human errors.

• A highly available and secure location for backup data, including immutability features.

• Design a Disaster Recovery strategy that best suit the protection requirements and available infrastructure.

• Document the entire Disaster Recovery plan.

In this section we will discuss the components to be included in a Disaster Recovery strategy using Kasten by Veeam.

Kubernetes Native Backup Solution

As we already mentioned, we need a Kubernetes native Data Protection
solution, capable of protecting cloud-native applications running in
these highly dynamic Kubernetes platforms. Veeam's Kasten K10 is a
leading Data Protection solution in the industry specifically designed for
Kubernetes platforms, making it an ideal choice for effectively
protecting cloud-native applications in these highly dynamic
environments.

Kasten K10 has been designed and built to run as a cloud-native
application running in the same Kubernetes cluster we want to protect.
By using this approach, Kasten K10 can run natively in the Kubernetes
cluster and discover all applications running on it with all their
dependencies, in addition to be capable of scaling-up and down and/or
scale-out and scale-in alongside the Kubernetes cluster.

By using a Kubernetes Native Backup solution like Kasten K10, we will
be able to protect our cloud-native applications, including all their
persistent data. In addition to the Backup and Restore operations,
Kasten K10 can also provide disaster recovery and migration
capabilities to Kubernetes applications.

CI/CD for automation and rapid rollbacks

Continuous Integration and Delivery solutions to automate application’s deployment could play an important role
in our Data Protection strategy, as they provide a method to re-deploy an application, with all its components,
whenever it’s necessary. This kind of solutions could also leverage their version control features to “restore” the
application with the desired version or configuration.

10 | P a g e .Cerda v1.0 2023

For example, let’s say we have a Kubernetes cluster with GitOps in place for automation. GitOps can use a software
agent to alert when there are differences between the Git repository and what is actually running on the Kubernetes
cluster. Then we observe a situation where someone made a manual change to the application directly on the
cluster, without leveraging the version control solution. We could leverage GitOps to get the declarative state of
the Kubernetes cluster, and then just running a Git revert operation, effectively rolling back the application to its
original state overwriting the changes done manually.

Still, remember this kind of solutions by themselves aren’t enough, as they aren’t able to protect the persistent data
stored by the applications.

Where to store my backups?

To design a proper Disaster Recovery strategy, it’s necessary to choose the proper location for our backups. This is
quite important as this data must be available in case of a disaster so we can restore the application and all its data
in an alternate location. A proper storage solution for backup data should be designed considering:

• Redundancy and High Availability

• Proper performance to meet the required RPOs and RTOs

• Immutability to protect data against threads like ransomware.

IMPORTANT: The 3-2-1 backup rule is still relevant when it comes to data protection for Kubernetes. The 3-2-1
backup rule states that there should be at least three copies of data, stored on two different media, with at least
one copy stored off-site. This rule helps ensure that data can be recovered in the event of data loss or other issues.

Kasten K10 allows us to export the backup data to Object Storage like AWS S3, Azure Blob or any S3 compatible
bucket, including on-premises solutions. Regardless the storage solution chosen to keep the backup data, it’s
important to protect our backups in case a disaster, whether an AWS (or another vendor) region goes down, or our
Datacenter is down.

For instance, we could send our backups to an AWS S3 bucket in a specific region, and then set a replication policy
in the AWS S3 bucket to replicate it to a different region (this is, of course, supported by Kasten), which will allow us
to restore the application data even when an entire AWS region is unavailable.

Similar configurations could be achieved with on-premises solutions like Scality RING or Cloudian HyperStore, where
the data stored in the Object Storage is replicated and available in multiple data centers.

NOTE: By default, K10 encryption is enabled for data and metadata stored in an object store or NFS file store, by
using AES-256-GCM encryption algorithm. Encryption cannot be disabled, but you can configure the method of
encryption to be used in your cluster. More info in Kasten documentation.

Approaches for Disaster Recovery strategy with Kasten

By using Kasten as a Data Protection and Disaster Recovery solution, we have multiple options to restore our
applications such as:

• Restoring single application’s components/artifacts

https://docs.kasten.io/latest/install/configure.html?highlight=encrypt

11 | P a g e .Cerda v1.0 2023

• Restoring an entire application

• Restoring multiple applications

• Restoring the entire cluster and its applications in a new cluster for Disaster Recovery purposes.

In this document we are going to focus in how to recover the entire Kubernetes cluster after a disaster. For this, we
have 2 options or Disaster Recovery strategies:

• Option 1: Restoring all the applications in a new Kubernetes cluster using the Kasten Import/Export
features.

• Option 2: Restore the entire Kubernetes configuration and applications using Kasten DR features.

In the next sections we will describe both Disaster Recovery strategies, and how implement them with Kasten K10
step by step. Nevertheless, in a real-world scenario time is of the essence, and when a disaster strikes, we want to
recover all our applications and data as soon as possible, avoiding running manual tasks whenever is possible.

In the Disaster Recovery context, automation is a paramount, and we should always include solutions and/or tools

that allows to automate and streamline the recovery process. Kasten K10 allows automation using third-party

solutions that can leverage the Kasten K10 API. Some automation strategies will be described in the last section of

this document.

Option 1: Disaster Recovery using Kasten Export/Import
features.

In this section we will focus on how to implement a Disaster Recovery strategy to restore all Kubernetes applications
into another Kubernetes cluster in a different location, using the native Kasten Export/Import capabilities. This
strategy is meant for the following scenarios:

• Hybrid environments: We have applications running in an on-premises Kubernetes cluster like RedHat
OpenShift, Suse Rancher or VMware Tanzu, and want to restore them into another Kubernetes cluster
provided by a Public Cloud like AWS EKS, Azure AKS or GCP GKE for Disaster Recovery purposes.

• Cross-cluster (on-premises to on-premises): We have applications running on-premises, using a
Kubernetes cluster like RedHat OpenShift, Suse Rancher or VMware Tanzu, and we want to restore them
into another Kubernetes cluster running in the same site or in a remote location.

• Cross-Cloud: We have applications running in a Kubernetes Cluster provided by a Public Cloud like AWS
EKS, and we want to restore them into another Kubernetes cluster provided by a different Public Cloud, like
Azure AKS.

• Cross-Region/Cross-Account: We have applications running in a Kubernetes Cluster provided by a Public
Cloud provider like AWS EKS, and we want to restore them into another Kubernetes cluster provided by the
same Cloud Provider, but running in another Region or Account/Subscription.

For this scenario we will be using an on-premises RedHat OpenShift deployment as a Production Kubernetes Cluster.
For the DR Kubernetes Cluster we will be using Red Hat OpenShift on Amazon Web Service (ROSA).

12 | P a g e .Cerda v1.0 2023

Both, Production and DR Kubernetes clusters will be using AWS S3 buckets as Location Profiles.

Stage 1: Protecting our applications

The high-level workflow for data protection in Kasten K10 involves taking a snapshot of your application data and
then exporting that snapshot to an external location for added data protection.

• First, you create a backup of your data as defined by your backup policy (snapshot).

• Then, you can choose to export the snapshot to another location, such as a secondary data center or cloud
storage service, to provide an additional layer of protection for your data. For this we need to configure
the proper Location Profiles in Kasten as explained next.

Configuring Location Profiles

Before we can protect our applications using Kasten Policies, we must set one or more Location Profiles. Location
Profiles are basically repositories where Kasten can export the application data. For Location Profiles we can use:

• Object Storage like AWS S3, Google Cloud Storage, Azure blob, or any other S3-compliant object store.

• NFS file storage.

13 | P a g e .Cerda v1.0 2023

TIP: When using this DR strategy, it’s very important that
the DR Kubernetes cluster has access to the Object
Storage buckets or NFS shares that contains the actual
backup data (in the image above, the Location Profile is
an AWS S3 Bucket call pcerda-k10). This can be
accomplished in two different ways:

• Object Storage buckets or NFS shares are

accessible from source (Production) and

target (DR) Kubernetes cluster. For instance,

we can use AWS S3 buckets, so even if we lose

the entire Production Kubernetes cluster, the

S3 bucket is still available and visible for the

DR Kubernetes cluster.

• Backup data is replicated to another Object

Storage bucket or NFS share. For instance, we

can enable replication for an S3 bucket (AWS S3 or S3 compatible), so we can have a second S3 bucket, in

a different location, with the replicated backup data. While backups of Production Kubernetes cluster are

sent to the S3 bucket, the DR Kubernetes cluster can access to backup data from the replicated bucket

(alternate location).

For this example, in Production Cluster we are using an AWS S3 Bucket called pcerda-k10 (image above) to
backup/export the application data using Kasten policies. This bucket has a replication rule in AWS S3 to replicate
all the data from this bucket to another bucket called pcerda-k10-dr, which can be used later to import the
application data.

14 | P a g e .Cerda v1.0 2023

Creating Kasten K10 Export policies

Once Location Profiles are configured in Kasten, to provide Disaster Recovery capabilities, the next step is of course
to backup our applications in the source Kubernetes cluster (further referred as Production cluster). In this case we
will use Kasten K10 to protect several applications running in the Production Cluster. We can create a Kasten Policy
to protect every application or create a Kasten Policy to protect multiple applications together.

In the next example, we will create a Kasten Policy to backup one
application called “Keycloak”. Keycloak is an open-source Identity
and Access Management that provides features like Single-Sign On,
Identity Brokering and User Federation that can be used by multiple
applications. This application includes the use of MySQL to keep all
Keycloak configuration and a PVC to store the MySQL database.

The application is accessible by using OpenShift routes as we can see in the picture bellow. There are 2 routes, the

first using the default domain set in OpenShift during OpenShift deployment, and the second is a route using a

custom FQDN with a custom SSL certificate.

NOTE: The same procedure will be followed to protect all applications in Production Cluster.

https://www.keycloak.org/

15 | P a g e .Cerda v1.0 2023

When we create a new Policy, first we must specify the
Policy name, and Snapshot for the action. Next can set the
backup frequency, for instance we can set this Policy to
run every hour.

In this scenario we need to enable the Enable Backup via
Snapshot Exports option to send the backup to an Object
Storage or NFS file storage. Then you need to enable the
Export Snapshot Data option (default) in order to export
both the application data and metadata. Without it, the
application data will not be exported, and the subsequent
import will fail.

When the Export Snapshot Data option is enabled, we
must specify a Location Profile (repository) where the
exported data and metadata will be stored. As mentioned
before, we have some options for Location Profile:

• Object Storage like AWS S3, Google Cloud
Storage, Azure blob, or any other S3-compliant
object store.

• NFS file storage.

Getting the Import Data

As a last step, after the Kasten backup policy is already created, we need to take note of the Import Data . This code
will be required when we create the Import Policy in the target cluster (further referred as DR cluster) and can be
obtained from the policy by clicking Show import details, which will result in a code like the one displayed in the
next image.

16 | P a g e .Cerda v1.0 2023

IMPORTANT: For the Disaster Recovery Plan we need to keep a copy of the Import Data for every single application
we want to restore in a different Kubernetes cluster after a disaster.

For our scenario, in the Production Cluster we have several stateful applications, running different types of databases
and applications. We have created a Kasten Policy for each one of these applications:

17 | P a g e .Cerda v1.0 2023

Stage 2: Importing the applications in the target cluster

Configuring Location Profiles

Just like we mentioned in Stage 1, we need to set one or
more Location Profiles also in DR Cluster. These Location
Profiles will be used to Import the data from Production
Cluster, but also can be used later to protect the application
running in DR Cluster using Kasten policies.

In this example we have two options to be used as a Location
Profile in DR Cluster to import the application’s data:

1. The AWS S3 bucket used in Stage 1 to store the
exported backup data using a Kasten Policy (if it’s
still available). In this case, the bucket name is
pcerda-k10.

2. As we have an AWS S3 replication rule in place,
replicating all the data in pcerda-k10 bucket to
another bucket called pcerda-k10-dr, we can use
the later to import the data using the “Alternate
Location” option. This option is useful when the
Location Profile used in Production Cluster isn’t
available anymore after a disaster occurs.

Creating Kasten K10 Import policies

Once we have all our applications protected with Kasten policies in the Production Cluster, and the Location Profiles
properly set in DR Cluster, it’s time to set the Kasten Import Policies in the DR Cluster. Creating an Import Policy is
very similar to the process of creating a Policy to protect the applications as we described in Stage 1, so in the Policy
page we select Create New Policy.

18 | P a g e .Cerda v1.0 2023

To import the protected applications in the DR cluster, we
select Import for the action instead of Snapshot at the
Policy creation. Next you can set a frequency for the
import task, which will control how often the Policy will
check the Object Storage or NFS File Storage location for
new data to import. In case a frequency is not set, the
Policy must be run manually on-demand.

NOTE: The frequency for the Import task doesn’t need to
match the frequency set in the protection Policy. For
instance, the protection Policy in the Production Cluster
could be set to run every hour, as showed in Stage 1, and
then the Import Policy in the DR Cluster could be set to run
every day. The frequency for both policies mainly depend
on customer’s requirements for Data Protection and
Disaster Recovery, and the required RPO.

One of the options we can enable when creating an
Import Policy is Restore After Import. This option, as
the name implies, will restore the entire application,
including all its data, and bring the application up in
this cluster after the metadata import is complete.
By default, this option isn’t enabled, so an Import
Policy will import just the application metadata to
Kasten, but not the data itself and the application
won’t be running in this cluster.

If we decide to enable the Restore After Import
option, every time the Import policy runs it will
restore the entire application and its data to the DR
Kubernetes Cluster. This means, the application will
be running simultaneously on both, Production and
DR Kubernetes Cluster. In this scenario, we will
basically have an Active-Active configuration, where
the application would be available in both sides, the
Production and DR Kubernetes cluster. So, the decision of whether enable the Restore After Import option or not,
depends on how the applications will behave after the restore process, and if the applications are designed to be
accessible from multiple locations.

IMPORTANT: According to the official Kasten documentation, care should be taken when auto-restoring the
application during import (Restore After Import option enabled). In particular, ensure that the newly restored
application does not conflict with the application running in the source cluster. Examples of potential conflicts
include accidental credential reuse, access to and use of external services, and services conflicting for exclusive
ownership of shared resources.

19 | P a g e .Cerda v1.0 2023

As we continue creating the Import policy, the next
step is pasting the Import Data we got in the Stage
1 in Config Data for Import, to allow Kasten K10 to
create the data export/import relationship for this
application across the clusters.

Finally, a location profile must be selected, which
contains the backup data created by Kasten in
Production Cluster (the DR Cluster usually only
needs read and list permissions on all the data in
the Location Profile).

When selecting a Location Profile, the list of
location profiles will show:

• A Matching Profile: This is the original
Export Location (If this location is visible to DR Cluster), which should contain the exported restore points.

• A list of "Other Profiles": Selecting a profile from the "Other Profiles" section can be useful if, for example,
a restore point has been replicated or moved from its original export location.

Now we can save the Import Policy to complete the process.

Stage 3: Restoring Applications after a Disaster

The Import Policy will run according to the schedule set in the policy or manually if required. If new data is detected
in the Location Profile, its metadata will be imported into the cluster, automatically associated with the application
stack already running, and be made available as a restore point.

Now, let’s discuss about how to restore our applications after importing them with Kasten.

“Restore after Import” option NOT selected

Please remember that unless Restore after Import is selected, only metadata is brought into the cluster. If the data
volumes reside in an object store or NFS file store, they will not be converted into native volumes until a restore
operation is initiated.

In this case, the Import Policy was created to import just the application metadata, without actually restoring the
application data. If we run this policy, we can see that the application and the Restore Point catalog has been
successfully imported, but the application itself hasn’t been restored, as that option wasn’t enabled in the Import
Policy.

20 | P a g e .Cerda v1.0 2023

So, what happens when a disaster occurs, and we need to recover all our applications in the DR cluster? Well, in
that case we need to restore the applications in the DR cluster. This restore process can be done manually for every
application, or it could be automated by using the Kasten API and third-party automation solutions like Ansible, Chef
or ArgoCD.

Here we are going to describe how to manually restore the applications in the DR cluster using the native Kasten
features. Later in this document we will discuss about automation strategies for Disaster Recovery.

First, go to the Applications section in the Kasten UI, select Removed under
the Filter by status drop-down menu. Then click restore under the
application we want to restore and select a restore point to recover from.

Once we select the restore point, we want to use to restore the application,
then we need to specify the Namespace where the application will be
restored. As we are restoring the applications in a new Kubernetes cluster,
the original Namespaces don’t exist. In this case, we can create a new
Namespace, during the restore process, with the desired name as we can
see in the image below:

https://docs.kasten.io/latest/api/cli.html

21 | P a g e .Cerda v1.0 2023

TIP: If we try to import and restore in a different Kubernetes cluster a stateful Application using Persistent Volumes,
we must check the Storage Classes available on both, Production and DR clusters, in order to allow the Import Policy
to complete successfully.

In our scenario, we have an on-premises OpenShift cluster as the Production cluster, and we have two Storage
Classes available as we can see in the next image:

For our DR Cluster we are using RedHat OpenShift on AWS, and we have four Storage Classes available as we can
see in the next image:

After importing it, if we try to restore the Keycloak application as
it is, the restore process will fail with an error message (see the
image) reporting that the Storage Class required by the Persistent
Volume Claim (PVC) is not available in the Kubernetes Cluster.

The application was using a Storage Class with name thin-csi in
the Production Cluster (RedHat OpenShift), while that Storage
Class isn’t available in the DR Cluster (RedHat OpenShift on AWS).
In order to fix this issue, and allow the import process to complete
successfully, we need to set a Transform in the Import policy.

A Transforms enable modifications to Kubernetes resources
during a restore/import task. In this case we need a Transform to
allow the Imported application to use a different Storage Class in
the DR Cluster, specifically the Storage Class called gp3 in AWS
EKS.

22 | P a g e .Cerda v1.0 2023

So, during the Restore process we must enable the Apply transforms to restored resources option and click in Add
New Transform.

In the New Transform window, we must specify a
name for the Transform and then the resource that
will be transformed during the Restore process. In
this case, we need to transform the application’s
PVC to use a different Storage Class in the DR
Cluster.

We click in Resource and set persistentvolumeclaim
as the resource to be transformed. Then, in
Operations, we create a Replace operations to
change the PVC’s Storage Class to one of the Storage
Classes available in DR Cluster (gp3).

TIP: You can click in Use an Example to get a sample
template to create a Storage Class transform more
easily.

Next, we can choose whether we want to restore the entire application or just specific Volumes or Artifacts. For
instance, if you are using a CI/CD solution like ArgoCD to redeploy the entire application stack in the target
Kubernetes cluster, then you can use Kasten to restore just the Persistent Volumes (PVs). Remember using CI/CD
solutions can’t provide protection for persistent data.

23 | P a g e .Cerda v1.0 2023

In case the Location Profile where the application data was sent to by using a Kasten Policy is not available, we can
use an Alternate Location Profile to restore the application from. In our scenario remember we have an AWS S3
bucket (pcerda-k10) with a replication policy to replicate all data to another AWS S3 bucket (pcerda-k10-dr). This
bucket with the replicated data can be used to restore the applications by clicking in Alternate Location Profile
option, and then choosing the proper Location Profile to restore the data from.

Finally, we click in “Restore” to start the restore process for the selected application. As we can see in the dashboard,
the application was successfully restored:

24 | P a g e .Cerda v1.0 2023

“Restore after Import“ option selected

Another option we have for restoring the applications, is to enable the “Restore after import” option in the Import
Policy as mentioned previously in Stage 2. In this case, the applications will be restored automatically in the DR
Cluster every time the Import Policy runs. No additional step is required in order to recover our applications.

Please remember that, as mentioned before, as we are recovering our applications in a different Kubernetes cluster,
in a different location, some transformations could be required. For instance, one of the most common
transformations is the use of a different Storage Class in the target Kubernetes cluster.

In our case, the on-prem Production OpenShift Cluster and the DR OpenShift Cluster running in AWS are both using
different Storage Classes. Thus, during the Import Policy creation, or by editing the policy afterwards, we must
enable the Apply transforms to restored resources option and then add a new Transform to use the proper Storage
Class during the application restore process, as we explained before.

Now we can run the Import Policy manually or let Kasten to run it automatically according to the schedule previously
set in the policy. As we can see in the picture below, Kasten has imported the application from the Location Profile,
including all its metadata and the Restore Point catalog, and then it has restored the application with all its artifacts
and data:

25 | P a g e .Cerda v1.0 2023

Stage 4: Make the applications accessible

We have already described the process to protect the applications running in our Kubernetes cluster, and then how
to recover them in an alternate location. There is still a missing step in order to make sure the applications can be
actually used.

Some of the applications running in a Kubernetes cluster are designed to be accessible by users, like web
applications. In the same way, other applications could be designed to be accessible for other applications running
out of the Kubernetes clusters. Usually, all these applications are accessible by using external load balancers,
Ingresses or Routes (OpenShift).

When we recover all our applications in a different cluster, in a different location, it’s very likely that we need to
make some additional changes to make sure the applications are available after being recovered.

In our previous example, the Keycloak application, we have 2 OpenShift routes that can be used to access the
Keycloak portal in the Production cluster. The first Route uses the default domain set during the OpenShift cluster
deployment. The second Route uses a custom domain with an SSL certificate to secure the connection.

After we restore the application in the DR Cluster (OpenShift on AWS), we can see both Routes are also restored
alongside with the rest of artifacts and data, and with the exact same configuration as the application in Production
cluster.

26 | P a g e .Cerda v1.0 2023

So, we have two Routes in the DR Cluster after the application is restored, and that won’t work if we try to access
the application. What should we do?

The Route using the internal domain should be modified to use the proper domain in OpenShift on AWS. This could
be done by using one of these options:

• Modifying the Route YAML file to change the hostname, using the proper default domain in OpenShift

• Deleting and recreating the Route in the DR Cluster. OpenShift will automatically create the new Route
using the proper default domain.

• Changing the hostname using a Transform during the Import/Restore process. This can be done using the
same steps describe earlier to change the Storage Class used by the application.

In the other hand, the Route using the custom domain can still be used in the DR Cluster as long as we modified the
DNS records in order to point to the proper address exposed in the DR Cluster.

Tip: In scenarios where the application will be recovered in the DR Cluster using a CI/CD pipeline, and using Kasten
just to recover the persistent data, the CI/CD pipeline could be configured to create the OpenShift Routes with the
proper hostnames. Using Continuous Deployment, we can even automatically update the DNS Records to point to
the proper addresses in the DR Cluster after the applications are restored.

The final configuration could be something like this:

Once the OpenShift routes are properly set, we can access our Keycloak application from the DR Cluster as we can
see in the next image:

27 | P a g e .Cerda v1.0 2023

Option 2: Disaster Recovery using Kasten DR feature

In this section we will focus on how to implement a Disaster Recovery strategy to restore all Kubernetes applications
into another Kubernetes cluster in a different location, using the native Kasten Disaster Recovery feature.

According to Kasten official documentation, K10 Disaster Recovery (DR) aims to protect K10 from the underlying
infrastructure failures. In particular, this feature provides the ability to recover the K10 platform in case of a variety
of disasters such as the accidental deletion of K10, failure of underlying storage that K10 uses for its catalog, or even
the accidental destruction of the Kubernetes cluster on which K10 is deployed.

By recovering Kasten K10 configuration with the Disaster Recovery feature allows us to recover the entire Kasten
catalog which includes information about the applications backed up with Kasten, and all the available restore-points
on the Location Profiles. By using this catalog, and once Kasten K10 is restored, it will be possible to restore all
applications in the DR Kubernetes cluster.

This strategy is meant for the following scenarios:

• Hybrid environments: We have applications running in an on-premises Kubernetes cluster like RedHat
OpenShift, Suse Rancher or VMware Tanzu, and want to restore them into another Kubernetes cluster
provided by a Public Cloud like AWS EKS, Azure AKS or GCP GKE for Disaster Recovery purposes.

• Cross-cluster (on-premises to on-premises): We have applications running on-premises, using a
Kubernetes cluster like RedHat OpenShift, Suse Rancher or VMware Tanzu, and we want to restore them
into another Kubernetes cluster running in the same site or in a remote location.

• Cross-Cloud: We have applications running in a Kubernetes Cluster provided by a Public Cloud like AWS
EKS, and we want to restore them into another Kubernetes cluster provided by a different Public Cloud, like
Azure AKS.

• Cross-Region/Cross-Account: We have applications running in a Kubernetes Cluster provided by a Public
Cloud provider like AWS EKS, and we want to restore them into another Kubernetes cluster provided by the
same Cloud Provider, but running in another Region or Account/Subscription.

28 | P a g e .Cerda v1.0 2023

TIP: The main difference between using Kasten DR feature and using the export/import approach, is:

• By using the export/import approach it is possible to have the Kubernetes cluster and all applications ready
to be used in the DR cluster at any time, as we can have all the applications data and metadata imported
and restored every time the Import policy runs according to schedule. This can significantly reduce the RTO
(recovery time objective) when a disaster occurs, as the applications data has been already restored.

• When using the Kasten DR feature, the Kasten configuration will be restored at the time the disaster occurs,
and then all the applications data must be restored accordingly, which of course will take some time
depending on the number of applications and the size of their data.

For this scenario we will be using AWS Elastic Kubernetes Service (EKS) to provide the Production and the DR
Kubernetes Cluster. Both clusters will be running in different AWS regions, Production cluster in eu-west3 (Paris)
and DR cluster in eu-west2 (London)

Both, Production and DR Kubernetes clusters will be using AWS S3 buckets as Location Profiles.

Stage 1: Enable Kasten Disaster Recovery feature

To enable K10 DR, a Location Profile needs to be
configured. This will use an object storage bucket or
an NFS file storage location to store data from K10's
internal data stores and the cluster will need to have
write permissions to this location. We can use one
of the Location Profiles set previously to store the
applications’ backup data. It’s recommended to use
an Object bucket with immutability enabled to
protect the Kasten configuration against ransomware
attacks.

29 | P a g e .Cerda v1.0 2023

K10 DR settings can be accessed from the Settings icon in the top-right corner of the dashboard or, for a new install,
via the prompt at the bottom of the dashboard. On the Settings page, select K10 Disaster Recovery and then click
the Enable K10 DR button to enable disaster recovery.

A Location Profile and a Passphrase will need to be provided to enable disaster recovery. The passphrase is required
for encryption and needs to be saved securely outside the cluster.

30 | P a g e .Cerda v1.0 2023

After enabling K10 DR feature, it is essential that
you copy and save the following to successfully
recover K10 from a disaster:

• The cluster ID displayed on the disaster
recovery page once the DR feature is
enabled.

• The DR passphrase entered when K10
DR was enabled.

• The credentials and object storage
bucket or the NFS file storage
information (Location Profile) where
DR data will be backed up.

NOTE: Without this information, K10 Disaster Recovery will not be possible.

Once K10 Disaster Recovery is enabled and properly configured, we will have a new Policy created and scheduled to
run by default every 4 hours, sending the backup data to the Location Profile selected previously.

Stage 2: Protect our applications

As we have already described in the previous scenario (Disaster Recovery using Kasten Export/Import features), in
Production cluster we need to complete the next steps in order to protect our applications:

1. We must set one or more Location Profiles. For this example, in Production Cluster we are using an AWS
S3 Bucket called pcerda-k10 to backup/export the application data using Kasten policies. This bucket has a
replication rule in AWS S3 to replicate all the data from this bucket to another bucket called pcerda-k10-dr,
which can be used later to import the application data in the DR cluster.

2. Create Kasten Policies with the Enable Backup via Snapshot Exports option to back up the applications and
export the data to one of the Location Profiles. These steps were already described in depth in the previous
scenario, so please refer to it for detailed steps.

31 | P a g e .Cerda v1.0 2023

TIP: When using this DR strategy, it’s very important that the DR Kubernetes cluster has access to the Object Storage
buckets or NFS shares that contains the actual backup data. This can be accomplished in two different ways:

• Object Storage buckets or NFS shares are accessible from source (Production) and target (DR)

Kubernetes cluster. For instance, we can use AWS S3 buckets, so even if we lose the entire production

Kubernetes cluster, the S3 bucket is still available and visible for the DR Kubernetes cluster.

• Backup data is replicated to another Object Storage bucket or NFS share. For instance, we can enable

replication for an S3 bucket (AWS S3 or S3 compatible), so we can have a second S3 bucket, in a different

location, with the replicated backup data. While backups of production Kubernetes cluster are sent to

the S3 bucket, the DR Kubernetes cluster can access to backup data from the replicated bucket (alternate

location).

Stage 3: Restore Kasten configuration after a Disaster

In case a disaster occurs in our Production Kubernetes cluster, we can use the Kasten DR feature to restore Kasten
configuration, and then restoring all our applications in our DR cluster.

IMPORTANT: To be able to restore the Kasten configuration and our applications, we need first to provision a new

Kubernetes cluster, whether on premises or using a Cloud provider like AWS EKS. The most popular Kubernetes

solutions, like RedHat OpenShift, SUSE Rancher, AWS EKS o Azure AKS, provides features to automate the

deployment of a new Kubernetes cluster which of course will speed up the recovery process.

Once we have a new Kubernetes cluster for DR up and running (in our case we will be using an AWS EKS cluster

running in a different region), we need to follow the next steps:

1. Create a namespace for Kasten in the DR Kubernetes cluster. By default, kasten-io.

2. Create a Kubernetes Secret called k10-dr-secret, using the passphrase provided while enabling DR.

kubectl create secret generic k10-dr-secret \

 --namespace kasten-io \

 --from-literal key=<passphrase>

3. Then, we need to install a new K10 instance in our DR Kubernetes cluster, in the same namespace where

the secret was created. Please follow the proper Kasten installation steps depending on the Kubernetes

distribution and your configuration requirements.

4. Once K10 is installed and available, we need to set a new Location Profile using the same Object Storage or

NFS File Share we used in Stage 1 when we enable the DR feature in the Production Kubernetes cluster.

This Location Profile contains all the K10 configuration of our Production Kubernetes cluster which we need

to restore. In our scenario, we will use an AWS S3 bucket called pcerda-k10immutable.

32 | P a g e .Cerda v1.0 2023

5. We will also need the Cluster ID we got when we enabled the DR feature in the Production Kubernetes

cluster.

6. Now, we can run the next command to restore the Kasten configuration from Kasten DR Backup. In this

command we need to provide the Location Profile name where the DR Backup is stored (set in previous

step) and the Cluster ID we got when we enabled the Kasten DR Feature.

helm install k10-restore kasten/k10restore --namespace=kasten-io \

 --set sourceClusterID=<source-clusterID> \

 --set profile.name=<location-profile-name>

The previous command will restore all the Kasten

configuration, including Location Profiles, Policies,

Secrets and the Restore Point catalog for all the

applications that were protected by Kasten in the

Production Kubernetes cluster.

NOTE:_While the restore process is running, you will

see a “Restore in Progress” message in Kasten

dashboard, which prevent you to run any action in

Kasten until the process is complete. When the restore process is complete, in the Kasten dashboard you will be

presented with a message like the image above, reporting the restore has been completed successfully. At this point

we can continue with the next steps of the Disaster Recovery plan. The entire Kasten restore process should take

just a few minutes, as at this point we are not yet restoring any application.

When running the restore process for Kasten configuration on DR Kubernetes cluster, and the Location Profiles are

not available or accessible from DR Kubernetes cluster, we can use an alternate Location Profile to restore the

application data. For instance, we could be using a replication policy in the AWS S3 bucket used as a Location Profile

(also mentioned in the Export/Import approach), to create a replica of the bucket with the backup data in another

region. Then, we could use this replicated copy as an Alternate Location to restore the application data.

NOTE: To use an Alternate Location to restore the applications, the location must be added previously to Kasten

configuration. For instance, in our case we have an AWS S3 bucket called pcerda-k10-dr with replicated backup data

from the original AWS S3 bucket, called pcerda-k10, used as a Location Profile in the Production Kubernetes cluster.

33 | P a g e .Cerda v1.0 2023

Stage 4: Recover the cluster-scoped resources.

Prior to recovering applications, it may be
desirable to restore cluster-scoped resources.
Cluster-scoped resources may be needed for
cluster configuration or as part of application
recovery.

Once the tasks to restore of Kasten Configuration
using the Kasten DR feature is completed as
described in the previous step, go to the Applications section in Kasten UI, hover on the Cluster-Scoped Resources
card, click on the restore icon, and select a cluster restore point to recover from.

When selected the proper restore point, we can choose whether to restore all cluster-scoped resources, or manually
select which artifacts will be restored.

NOTE: This is one of the major differences between using Kasten and using ETCD backups to protect Kubernetes
resources. By using Kasten we can run backup policies automatically with different scheduling options, having
multiple restore points, and also, we can have a lot of granularity to choose what specific artifacts we want to restore,
which provide a lot of flexibility in compare with ETCD backups.

Once selected the components we want to restore, just click in Restore to start the restore process.

34 | P a g e .Cerda v1.0 2023

Stage 5: Restore Applications

So far, we have restored the Kasten configuration, including the Restore
Points catalog for all applications protected in Production Kubernetes
cluster, and we have restored the cluster-scoped resources in the DR
cluster. Now we can proceed with the restoring of all applications in the
DR cluster using the native Kasten features.

This restore process can be done manually for every application, or it
could be automated by using the Kasten API or third-party solutions like
ArgoCD.

First, go to the Applications section in the Kasten UI, select Removed
under the Filter by status drop-down menu. Then click restore under
the application we want to restore and select a restore point to recover
from.

TIP: If we are trying to recover our applications in a Kubernetes cluster
running in a different location (for instance in our scenario we are
restoring the applications in a different AWS Region, eu-west-2), then
we should choose a restore point of type “Exported” instead of using a
Snapshot to restore the data. This means we should restore the
applications from the data backed up (exported) to a Location Profile
(AWS S3 Bucket in our case), as by default the Snapshots will be
available only in the same AWS region where they were taken (eu-west-
3 in our scenario).

If we try to use a snapshot to restore the application data, we could get
an error message like this:

Failed to create volume from snapshot. InvalidZone.NotFound: The zone 'eu-west-2b' does not exist. status code:
400, request id: 46215ee1-7fa2-445c-bfc8-491b2ebdc3fb

Once we select the restore point, we want to use to restore the application, then we need to specify the Namespace
where the application will be restored. As we are restoring the applications in a new Kubernetes cluster, the original
Namespaces don’t exist. In this case, we can create a new Namespace, during the restore process, with the desired
name as we can see in the image below:

https://docs.kasten.io/latest/api/cli.html

35 | P a g e .Cerda v1.0 2023

Next, we can choose whether we want to restore the entire application or just specific Volumes or Artifacts. For
instance, if we could use a CI/CD solution to redeploy the entire application in the target Kubernetes cluster, and
then using Kasten to restore just the Persistent Volumes (PVs). Remember using CI/CD solutions can’t provide
protection for persistent data.

36 | P a g e .Cerda v1.0 2023

In case the Location Profile where the application data was sent to by using a Kasten Policy is not available, we can
use an Alternate Location Profile to restore the application from. In our scenario remember we have an AWS S3
bucket (pcerda-k10) with a replication policy to replicate all data to another AWS S3 bucket (pcerda-k10-dr). This
bucket with the replicated data can be used to restore the applications by clicking in Alternate Location Profile
option, and then choosing the proper Location Profile to restore the data from.

Please remember that, as mentioned in previous scenario, as we are recovering our applications in a different
Kubernetes cluster, in a different location, some transformations could be required. For instance, one of the most
common transformations is the use of a different Storage Class in the target Kubernetes cluster.

37 | P a g e .Cerda v1.0 2023

In our case, as we are using AWS EKS to host both, Production and DR clusters, we have the same Storage Classes
available in both clusters, so no Transform is required in this matter. Other transforms could be required to make
applications accessible from outside the cluster if required.

Finally, we click in “Restore” to start the restore process for the selected application. As we can see in the dashboard,
the application was successfully restored:

Stage 6: Make the applications accessible

We have already described the process to protect the applications running in our Kubernetes cluster, and then how
to recover them in an alternate location. There is still a missing step in order to make sure the applications can be
actually used.

Some of the applications running in a Kubernetes cluster are designed to be accessible by users, like web
applications. In the same way, other applications could be designed to be accessible for other applications running
out of the Kubernetes clusters. Usually all these applications are accessible by using external load balancers,
Ingresses or Routes (OpenShift).

When we recover all our applications in a different cluster, in a different location, it’s very likely we need to make
some additional changes to make sure the applications are available after being recovered.

For example, in our Production cluster we have a Wordpress application using a LoadBalancer service to expose the
application in the Kubernetes cluster, so users can access the Wordpress website using the URL provided by AWS as
we can see in the picture below:

Of course, this kind of URL are not really user-friendly, so usually we will use DNS records to create a custom FQDN
redirecting the traffic to the URL generated by AWS. For example:

38 | P a g e .Cerda v1.0 2023

After we restore the application in the DR Cluster (AWS EKS in a different region), we can see the LoadBalancer
service was restored using a different URL, as these URLs are automatically generated when the LoadBalancer service
is created. During the restore process Kasten will basically re-create the Services for the application, so AWS will
automatically generate a new URL for the LoadBalancer service.

In this case, we basically need to update the DNS records in order to point to the proper addresses exposed in the
DR Cluster. Once the DNS records are properly updated, we can access our Wordpress application from the DR
Cluster:

39 | P a g e .Cerda v1.0 2023

How to choose the Disaster Recovery Strategy

In this document we have presented two different Disaster Recovery strategies to protect the applications running
in a Kubernetes cluster. Now the question is, how to choose the proper strategy that fits better with our scenario
and specific requirements? Let’s discuss about both options and their pros and cons.

Using Kasten Export/Import features

The Export/Import features were designed in the first place for application migration, but it has become a great
option to implement a Disaster Recovery strategy, specially to reduce the recovery times (RTO).

Pros

• It can provide an active-active configuration. It reduces the overall time required to run the Disaster
Recovery Process as we already have a second Kubernetes cluster up and running, with Kasten already
installed, and the applications imported and ready to be restored in case of a disaster.

• It reduces the application’s recovery time by having the applications running in two different Kubernetes
clusters simultaneously (when we choose to restore the application’s data after importing it).

• It uses a fresh new Kubernetes cluster and Kasten instance, which allows us to restore all our applications
in a new and clean environment.

Cons

• It increases the cost of the overall solution, as we need to “duplicate” the entire Kubernetes environment,
despite we can reduce the scale of the Kubernetes clusters in the DR site.

• Not all the applications are designed to run simultaneously in two different clusters and keep data
consistency. In this case, we can import the applications, but leaving the actual restore process on hold
until the production Kubernetes cluster fails. This will increase the recovery time as we need to restore the
entire applications and their data AFTER a disaster strikes.

Using Kasten Disaster Recovery feature

As already mentioned, the Kasten Disaster Recovery feature allows to restore a Kasten instance and all its
configuration and catalog in case of a disaster, without extra running costs.

Pros

• It reduces costs because we don’t need the DR Kubernetes cluster running simultaneously alongside the
production Kubernetes cluster.

• Simple approach that allows to restore the entire Kasten instance and all its settings. No need for extra
configuration in Kasten once restored.

40 | P a g e .Cerda v1.0 2023

Cons

Recovery times are higher than the previous strategy, because when a disaster strikes, we need to deploy the

Kubernetes cluster, install Kasten and restore Kasten configuration before we can actually start restoring our

applications.

How to Automate the Disaster Recovery Strategy

So far, we have described two different Disaster Recovery strategies that can be used to protect our applications
running in a Kubernetes cluster. However, manually running the required steps to restore the applications once a
disaster strikes, using either strategy, usually isn’t an option because the number of applications and data to restore,
and/or because we have aggressive RTOs that require to streamline the recovery process.

Thus, automation is a key component when designing any Disaster Recovery strategy. And of course, both strategies
described in this document can be automated with third-party solutions and leveraging the Kasten API. In this
section we will provide a brief description on how to automate the Kubernetes DR strategy and what solutions can
be useful for this purpose.

Deploying the Kubernetes clusters

Usually the most popular Kubernetes solutions, like RedHat OpenShift, AWS EKS, Azure AKS and others offer simple
wizards to deploy a new Kubernetes cluster whenever is needed, reducing the manual steps.

In addition, in order to streamline and fully automate the process, it is possible to use third party solutions like
Terraform, which allows to deploy a new Kubernetes cluster with a single command.

Deploying Kasten K10

Deploying Kasten K10 is fairly simple using Helm, which of course provide multiple parameters than can be used
depending on the Kubernetes solution where Kasten is going to be installed. However, installing Kasten isn’t enough,
as it’s also necessary to configure some basic settings like creating Location Profiles, creating policies, and so on.

Deployment and configuration of a new Kasten K10 instance can also be automated by using Configuration
Management solutions like Ansible, Chef or Puppet.

Some examples of how to use Ansible to automate the deployment and configuration of Kasten K10 can be found
in this GitHub project:

https://github.com/prcerda/K10-ExportImport-Ansible/blob/main/playbook/dr_cluster/01_k10_install.yaml

IMPORTANT: This GitHub project is just an example of a deployment and it’s meant to be used for testing and
learning purposes only. Do not use in production.

https://developer.hashicorp.com/terraform/tutorials/kubernetes
https://github.com/prcerda/K10-ExportImport-Ansible/blob/main/playbook/dr_cluster/01_k10_install.yaml

41 | P a g e .Cerda v1.0 2023

Exporting and Importing Applications with Kasten

Once we have a functional Kasten instance, we need to create the Kasten Policies to protect (Export) the applications
running in Kubernetes. In case of using the Export/Import strategy, we also need to create the Import policies in the
DR Kubernetes cluster so we can import the applications in a different cluster for disaster recovery purposes.

Importing applications could also require the use of Transforms in Kasten policies, for example in case we are
importing the applications in a Kubernetes cluster with different Storage Classes.

Kasten policy management can also be automated using Configuration Management solutions like Ansible, Chef or
Puppet. Some examples of how to use Ansible to automate the creation of Export and Import policies in Kasten K10,
including the use of Transforms, can be found in this GitHub project:

https://github.com/prcerda/K10-ExportImport-Ansible

IMPORTANT: This GitHub project is just an example of a deployment and it’s meant to be used for testing and
learning purposes only. Do not use in production.

Using the Kasten Disaster Recovery feature

In case of using the native Kasten Disaster Recovery feature, after deploying Kasten K10 in a new Kubernetes cluster,
we need to configure at least one Location Profile and then restore the Kasten configuration. Just once the Kasten
configuration is restored we will be able to restore all the applications.

Recovering Kasten K10 using the Disaster Recovery feature of course can be automated using Configuration
Management solutions like Ansible, Chef or Puppet. Some examples of how to use Ansible to restore the Kasten
configuration and all the applications, can be found in this GitHub project:

https://github.com/prcerda/k10-dr-ansible

IMPORTANT: This GitHub project is just an example of a deployment and it’s meant to be used for testing and
learning purposes only. Do not use in production.

Restoring applications

So far, we have mentioned how to automate the deployment of a Kubernetes cluster, installing and configuring
Kasten, and creating/recovering the Kasten policies to export/import the applications. One last step of course is
actually restoring the applications.

We can use Kasten K10 to restore every application manually using one of the available restore points, as we have
already described in both Disaster Recovery strategies. However, in a real-world scenario this could be quite slow,
and it would be really difficult to meet the RTO requirements, so again automation is important.

https://github.com/prcerda/K10-ExportImport-Ansible
https://github.com/prcerda/k10-dr-ansible

42 | P a g e .Cerda v1.0 2023

Here we have 2 different approaches to restore applications:

• Restoring the entire applications from the available Restore Points in Kasten. This can be fully automated
using solutions like Ansible. An example can be found in this GitHub project:
https://github.com/prcerda/k10-dr-ansible/blob/main/playbook/aws_eks/03_k10_restoreapps.yaml

• Re-deploying the applications in the new Kubernetes cluster, and then restore only the application’s data
using Kasten. This can be fully automated by using:

o CD solutions like ArgoCD, which can be used to deploy the applications in a specific cluster.
o Solutions like Ansible to run commands and/or apply YAML manifests that can be used to restore

the application’s data from restore point available in Kasten.
o An example about using ArgoCD and Ansible to restore the applications and application’s data can

be found in this GitHub Project:
https://github.com/prcerda/K10-RestoreApp-ArgoCD-Ansible

IMPORTANT: This GitHub project is just an example of a deployment and it’s meant to be used for testing and
learning purposes only. Do not use in production.

So, as we can see we are plenty of solutions that can provide the tools to automate the whole Disaster Recovery
strategy for all the applications running in a Kubernetes cluster.

About the Author

Patricio Cerda is presently a Senior Solutions Architect based in Spain, specialized in microservices with focus on
Kubernetes and Kasten. He has more than 20 years of experience in the IT industry, with special focus in VMware
SDDC solutions and AWS before joining Veeam Software in 2021.

About Kasten by Veeam

Kasten by Veeam® is the leader in Kubernetes backup. Kasten K10 is a Cloud Native data management platform for
Day 2 operations. It provides enterprise DevOps teams with backup/restore, disaster recovery and application
mobility for Kubernetes applications. Kasten K10 features operational simplicity and integrates with relational and
NoSQL databases, all major Kubernetes distributions, and runs in any cloud to maximize freedom of choice. Our
customers are confident that their Kubernetes applications and data are protected and always available with the
most easy-to-use, reliable and powerful Cloud Native data management platform in the industry. For more
information, visit www.kasten.io or follow @kastenhq on Twitter.

https://github.com/prcerda/k10-dr-ansible/blob/main/playbook/aws_eks/03_k10_restoreapps.yaml
https://github.com/prcerda/K10-RestoreApp-ArgoCD-Ansible
https://www.kasten.io/
https://twitter.com/kastenhq

